Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 37(29): 3998-4012, 2018 07.
Article in English | MEDLINE | ID: mdl-29691476

ABSTRACT

Epstein-Barr virus (EBV)-associated Burkitt's lymphoma is characterised by the deregulation of c-Myc expression and a restricted viral gene expression pattern in which the EBV nuclear antigen-1 (EBNA1) is the only viral protein to be consistently expressed. EBNA1 is required for viral genome propagation and segregation during latency. However, it has been much debated whether the protein plays a role in viral-associated tumourigenesis. We show that the lymphomas which arise in EµEBNA1 transgenic mice are unequivocally linked to EBNA1 expression and that both C-Myc and Mdm2 deregulation are central to this process. Tumour cell survival is supported by IL-2 and there is a skew towards CD8-positive T cells in the tumour environment, while the immune check-point protein PD-L1 is upregulated in the tumours. Additionally, several isoforms of Mdm2 are upregulated in the EµEBNA1 tumours, with increased phosphorylation at ser166, an expression pattern not seen in Eµc-Myc transgenic tumours. Concomitantly, E2F1, Xiap, Mta1, C-Fos and Stat1 are upregulated in the tumours. Using four independent inhibitors of Mdm2 we demonstrate that the EµEBNA1 tumour cells are dependant upon Mdm2 for survival (as they are upon c-Myc) and that Mdm2 inhibition is not accompanied by upregulation of p53, instead cell death is linked to loss of E2F1 expression, providing new insight into the underlying tumourigenic mechanism. This opens a new path to combat EBV-associated disease.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/metabolism , Lymphoma/virology , Proto-Oncogene Proteins c-mdm2/metabolism , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Death/physiology , Cell Line , E2F1 Transcription Factor/metabolism , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Viral/physiology , Herpesvirus 4, Human/metabolism , Humans , Interleukin-2/metabolism , Lymphoma/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/physiology
2.
Nucleic Acids Res ; 39(21): 9316-28, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21849325

ABSTRACT

Zinc-finger recombinases (ZFRs) are chimaeric proteins comprising a serine recombinase catalytic domain linked to a zinc-finger DNA binding domain. ZFRs can be tailored to promote site-specific recombination at diverse 'Z-sites', which each comprise a central core sequence flanked by zinc-finger domain-binding motifs. Here, we show that purified ZFRs catalyse efficient high-specificity reciprocal recombination between pairs of Z-sites in vitro. No off-site activity was detected. Under different reaction conditions, ZFRs can catalyse Z-site-specific double-strand DNA cleavage. ZFR recombination activity in Escherichia coli and in vitro is highly dependent on the length of the Z-site core sequence. We show that this length effect is manifested at reaction steps prior to formation of recombinants (binding, synapsis and DNA cleavage). The design of the ZFR protein itself is also a crucial variable affecting activity. A ZFR with a very short (2 amino acids) peptide linkage between the catalytic and zinc-finger domains has high activity in vitro, whereas a ZFR with a very long linker was less recombination-proficient and less sensitive to variations in Z-site length. We discuss the causes of these phenomena, and their implications for practical applications of ZFRs.


Subject(s)
Recombinases/chemistry , Recombinases/metabolism , Zinc Fingers , Amino Acid Sequence , DNA Cleavage , Molecular Sequence Data , Protein Engineering , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinases/genetics , Recombination, Genetic
3.
Genes Cancer ; 2(1): 74-87, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21779482

ABSTRACT

An important role for B cells and immunoglobulin deposition in the inflammatory tumor cell environment has been recognized in several cancers, and this is recapitulated in our murine model of inflammation-associated carcinogenesis: transgenic mice expressing the Epstein-Barr virus oncogene LMP1 in epithelia. Similarly in several autoimmune disorders, immunoglobulin deposition represents a key underlying event in the disease process. However, the autoantigens in most cases are not known. In other studies, overexpression of the enzymatically inactive mammalian chitinase-like proteins (CLPs) has been observed in a number of autoimmune disorders and numerous cancers, with expression correlated with poor prognosis, although the function of these proteins is largely unknown. We have now linked these observations demonstrating that overexpression of the CLPs renders them the targets for autoantigenicity during carcinogenic progression. We show that the CLPs, Chi3L1, Chi3L3 /YM1, and Chi3L4/YM2, are abundantly overexpressed in the transgenic epidermis at an early, preneoplastic stage and secreted into the serum. Immunoglobulin G reactive to the CLPs is detected in the serum and deposited in the hyperplastic tissue, which goes on to become inflamed and progressively displastic. The CLPs are also upregulated in chemical carcinogen-promoted lesions in both transgenic and wild-type mice. Expression of the related, active chitinases, Chit1 and AMCase, increases following infiltration of inflammatory cells. In this model, the 3 CLPs are autoantigens for the tissue-deposited immunoglobulin, which we propose plays a causative role in promoting the inflammation-associated carcinogenesis. This may reflect their normal, benign function to promote tissue remodeling and to amplify immune responses. Their induction during carcinogenesis and consequent autoantigenicity provides a missing link between the oncogenic event and subsequent inflammation. This study identifies the CLPs as important and novel therapeutic targets to limit inflammation in cancer and potentially also autoimmune disorders.

4.
Mol Cancer ; 10(1): 11, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21291541

ABSTRACT

BACKGROUND: The importance of the malignant cell environment to its growth and survival is becoming increasingly apparent, with dynamic cross talk between the neoplastic cell, the leukocyte infiltrate and the stroma. Most cancers are accompanied by leukocyte infiltration which, contrary to an anticipated immuno-protective role, could be contributing to tumour development and cancer progression. Epstein-Barr virus (EBV) associated cancers, including nasopharyngeal carcinoma and Hodgkin's Disease, show a considerable leukocyte infiltration which surrounds the neoplastic cells, raising the questions as to what role these cells play in either restricting or supporting the tumour and what draws the cells into the tumour. In order to begin to address this we have studied a transgenic model of multistage carcinogenesis with epithelial expression of the EBV primary oncoprotein, latent membrane protein 1 (LMP1). LMP1 is expressed particularly in the skin, which develops a hyperplastic pathology soon after birth. RESULTS: The pathology advances with time leading to erosive dermatitis which is inflamed with a mixed infiltrate involving activated CD8+ T-cells, CD4+ T-cells including CD4+/CD25+/FoxP3+ Treg cells, mast cells and neutrophils. Also significant dermal deposition of immunoglobulin-G (IgG) is observed as the pathology advances. Along with NF-kappaB activation, STAT3, a central factor in inflammation regulation, is activated in the transgenic tissue. Several inflammatory factors are subsequently upregulated, notably CD30 and its ligand CD153, also leukocyte trafficking factors including CXCL10, CXCL13, L-selectin and TGFß1, and inflammatory cytokines including IL-1ß, IL-3 and the murine IL-8 analogues CXCL1, CXCL2 and CXCL5-6, amongst others. The crucial role of mature T- and/or B-lymphocytes in the advancing pathology is demonstrated by their elimination, which precludes mast cell infiltration and limits the pathology to an early, benign stage. CONCLUSIONS: LMP1 can lead to the activation of several key factors mediating proliferation, angiogenesis and inflammation in vivo. With the initiation of an inflammatory programme, leukocyte recruitment follows which then itself contributes to the progressing pathology in these transgenic mice, with a pivotal role for B-and/or T-cells in the process. The model suggests a basis for the leukocyte infiltrate observed in EBV-associated cancer and its supporting role, as well as potential points for therapeutic intervention.


Subject(s)
Cell Transformation, Neoplastic/immunology , Herpesvirus 4, Human , Inflammation/immunology , Viral Matrix Proteins/immunology , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/pathology , Cell Movement , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chemokines/blood , Cytokines/blood , Female , Homeodomain Proteins/genetics , Immunoglobulin G/metabolism , Inflammation/metabolism , Inflammation/virology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT3 Transcription Factor/metabolism , Skin/immunology , Skin/metabolism , Skin/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Viral Matrix Proteins/genetics
5.
J Clin Invest ; 120(8): 2842-57, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20592473

ABSTRACT

The cytokine TGF-beta acts as a tumor suppressor in normal epithelial cells and during the early stages of tumorigenesis. During malignant progression, cancer cells can switch their response to TGF-beta and use this cytokine as a potent oncogenic factor; however, the mechanistic basis for this is poorly understood. Here we demonstrate that downregulation of disabled homolog 2 (DAB2) gene expression via promoter methylation frequently occurs in human squamous cell carcinomas (SCCs) and acts as an independent predictor of metastasis and poor prognosis. Retrospective microarray analysis in an independent data set indicated that low levels of DAB2 and high levels of TGFB2 expression correlate with poor prognosis. Immunohistochemistry, reexpression, genetic knockout, and RNAi silencing studies demonstrated that downregulation of DAB2 expression modulated the TGF-beta/Smad pathway. Simultaneously, DAB2 downregulation abrogated TGF-beta tumor suppressor function, while enabling TGF-beta tumor-promoting activities. Downregulation of DAB2 blocked TGF-beta-mediated inhibition of cell proliferation and migration and enabled TGF-beta to promote cell motility, anchorage-independent growth, and tumor growth in vivo. Our data indicate that DAB2 acts as a tumor suppressor by dictating tumor cell TGF-beta responses, identify a biomarker for SCC progression, and suggest a means to stratify patients with advanced SCC who may benefit clinically from anti-TGF-beta therapies.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Carcinoma, Squamous Cell/etiology , Epigenesis, Genetic , Promoter Regions, Genetic , Transforming Growth Factor beta/physiology , Tumor Suppressor Proteins/physiology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/prevention & control , Cell Line, Tumor , Cell Movement , CpG Islands , DNA Methylation , Down-Regulation , Head and Neck Neoplasms/etiology , Humans , Mice , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/antagonists & inhibitors
6.
Mol Cancer ; 9: 184, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20618963

ABSTRACT

BACKGROUND: The latent membrane protein-1 (LMP1) encoded by Epstein-Barr virus (EBV) is an oncoprotein which acts by constitutive activation of various signalling pathways, including NF-kappaB. In so doing it leads to deregulated cell growth intrinsic to the cancer cell as well as having extrinsic affects upon the tumour microenvironment. These properties and that it is a foreign antigen, lead to the proposition that LMP1 may be a good therapeutic target in the treatment of EBV associated disease. LMP1 is expressed in several EBV-associated malignancies, notably in Hodgkin's lymphoma and nasopharyngeal carcinoma (NPC). However, the viral protein is only detected in approximately 30%-50% of NPC samples, as such its role in carcinogenesis and tumour maintenance can be questioned and thus its relevance as a therapeutic target. RESULTS: In order to explore if LMP1 has a continuous function in established tumours, its activity was inhibited through expression of a dominant negative LMP1 mutant in tumour cell lines derived from transgenic mice. LMP1 is the tumour predisposing oncogene in two different series of transgenic mice which separately give rise to either B-cell lymphomas or carcinomas. Inhibition of LMP1 activity in the carcinoma cell lines lead to a reduction in clonagenicity and clone viability in all of the cell lines tested, even those with low or below detection levels of LMP1. Inhibition of LMP1 activity in the transgenic B-cell lines was incompatible with growth and survival of the cells and no clones expressing the dominant negative LMP1 mutant could be established. CONCLUSIONS: LMP1 continues to provide a tumour cell growth function in cell lines established from LMP1 transgenic mouse tumours, of both B-cell and epithelial cell origin. LMP1 can perform this function, even when expressed at such low levels as to be undetectable, whereby evidence of its expression can only be inferred by its inhibition being detrimental to the growth of the cell. This raises the possibility that LMP1 still performs a pro-oncogenic function in the 50% to 70% of NPC tumours wherein LMP1 protein expression cannot be detected. This reinforces the basis for pursuing LMP1 as a therapeutic target in EBV associated LMP1-expressing malignancies.


Subject(s)
Herpesvirus 4, Human/metabolism , Viral Matrix Proteins/antagonists & inhibitors , Animals , Cell Line, Tumor , Hodgkin Disease/drug therapy , Hodgkin Disease/virology , Mice , Mice, Transgenic , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/virology
7.
J Proteome Res ; 6(9): 3422-32, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17696380

ABSTRACT

Difference gel electrophoresis (DiGE) allows the reliable comparison of proteome differences between two or three samples within a single gel, by way of a CyDye fluorescent labeling system. This facilitates identification of protein differences avoiding the difficulties associated with gel-to-gel variation. A drawback of this approach is the necessity for high-purity protein samples, since contaminants can interfere with the labeling process, affecting subsequent analysis. Thus far, DiGE has been applied to the study of various sample types derived from relatively simple starting materials such as serum, cell lines, or primary cells. Herein, we describe optimization of protein extraction and purification from a complex tissue (the murine ear) of which a major component is skin, which is compatible with the CyDye labeling system and DiGE. Protein samples obtained by this method from preneoplastic, transgenic tissue have been effectively compared to normal tissue samples to reveal bona fide differences, verifiable by Western blotting. In total, 41 protein differences (21 up- and 20 down-regulated in the pathological samples) were identified by mass spectrometry (MS). This method can therefore form a guide for those wishing to perform DiGE on complex tissues, and is especially useful for samples with relatively insoluble components such as skin.


Subject(s)
Computational Biology/methods , Electrophoresis, Polyacrylamide Gel/methods , Precancerous Conditions/diagnosis , Proteomics/methods , Skin/pathology , Animals , Epidermis/metabolism , Female , Fluorescent Dyes/pharmacology , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Mice , Mice, Transgenic , Precancerous Conditions/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology
8.
Carcinogenesis ; 28(8): 1839-48, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17361012

ABSTRACT

The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is an oncoprotein expressed in several EBV-associated malignancies. We have utilised mice expressing the Cao strain of LMP1 in epithelia to explore the consequences of expression in vivo, specifically the changes that occur prior to neoplasia, in the hyperplastic but degenerating tissue. Epidermal growth factor receptor (EGFR) ligands (transforming growth factor alpha (TGFalpha), heparin-binding EGF-like growth factor and epiregulin) are constitutively induced by LMP1, leading to EGFR phosphorylation but also down-regulation, degradation or turn-over, with the appearance of cleaved EGFR fragments. This is accompanied by down-regulation of Akt and activation of caspase-3 and p38 mitogen-activated protein kinase (MAPK). Surprisingly, removal of TGFalpha (using the null strain) does not ameliorate the LMP1-induced phenotype, but instead accelerates the deterioration. Consistent with this, EGFR is reduced less rapidly and MAPK/ERK kinase (MEK) and extracellular-signal-regulated kinase (ERK) are initially activated in the null background, suggesting that TGFalpha or excess of the ligands together act to divert phosphorylated EGFR into a cleavage pathway. In addition, LMP1 leads to the activation of c-Jun N-terminal kinase 2 (JNK2) followed by JNK1 in the effected tissue. Specific AP1 family members FosB, Fra-1 and JunB are constitutively induced and serum response factor, AP1 and nuclear factor kappaB (incorporating p65) are activated in the transgenic tissue compared with wild-type. This system allows the analysis of early events resulting from the expression of a viral oncogene with broad impact in the signalling milieu and the attempts at homeostasis in the responding tissue. It reveals what regulatory circuits are in place in a normal tissue, thus facilitating further prediction of causative events in carcinogenic progression.


Subject(s)
Down-Regulation/physiology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/physiology , Neoplasms/etiology , Neoplasms/metabolism , Transforming Growth Factor alpha/physiology , Viral Matrix Proteins/physiology , Animals , Enzyme Activation/physiology , Extracellular Signal-Regulated MAP Kinases/physiology , Herpesvirus 4, Human/physiology , Humans , Mice , Mice, Knockout , Mice, Transgenic , Neoplasms/virology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor alpha/deficiency , Transforming Growth Factor alpha/genetics , Viral Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...