Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(80): 11979-11982, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37724566

ABSTRACT

Controlled aggregation of dyes is crucial to achieve their desired optical and electronic properties. Here, we report the induction of chiral J-aggregation of carbocyanine dyes by using lysine-derived amphiphile assemblies as scaffolds in water. The molecular structure of the amphiphiles affected the packing of the assembly. The tight packing with some flexibility promoted the formation of J-aggregates of the dyes with strong chiroptical properties.

2.
Chem Commun (Camb) ; 59(64): 9762-9765, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37483164

ABSTRACT

Self-organised helical bilayers of dicationic gemini surfactants confined in helical silica nanospace were transformed in situ to carbon dots (CDots) via pyrolysis. These water-dispersible CDots exhibit electronic absorption spanning the UV and visible range and possess symmetrical circular dichroism (CD) signals, the sign of which depends on the handedness of the helices.

3.
Chirality ; 35(7): 411-417, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36943171

ABSTRACT

Fluorescent materials with large Stokes shifts have significant potential for use in optical applications. Typically, a synthetic design strategy is utilized for this purpose. In this study, we demonstrated a novel method by binding a chiral template to a nonchiral fluorescent agent without chemical modification. Specifically, α-helical poly(L-lysine) was employed as the chiral template, which interacted with a disulfonic fluorescent dye, such as NK2751. The dye caused excimer luminescence by inducing the formation of a chirally H-aggregated dimer only when poly(L-lysine) was in an α-helical shape. The result was a Stokes shift of 230 nm. Similar effects were not observed when the chiral template was in a random coil condition and the Stokes shift was less than 40 nm. These findings imply that H-aggregated dimerization, which often results in quenching, permits the electronic transitions necessary for fluorescence events by the formation of the chirally twisted state. In addition, we introduce for the first time the generation of circularly polarized luminescence using the chirality induction phenomena in a dye supported by poly(L-lysine).

4.
Heliyon ; 7(1): e05959, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33521354

ABSTRACT

For the first time, we incorporated mesoporous micro-silica (5 µm, pore size = 50 nm) as a filler in epoxy resin aiming to enter polymer into the pore of the silica. As expected, the thermal stability of the composite increased remarkably, followed by noteworthy thermal degradation kinetics when compared to the controlled cured epoxy resin. Composites were prepared by the direct dispersion of modified nano-silica, modified mesoporous micro-silica, unmodified mesoporous micro-silica, non-porous micro-silica, and irregular micro-silica of various pore sizes as fillers in diglycidyl ether of bisphenol-A epoxy resin via ultra-sonication and shear mixing, followed by oven-curing with 4,4-diaminodiphenyl sulfone. DSC and TGA analyses demonstrated a higher glass transition temperature (increased by 3.65-5.75 °C) and very high activation energy for thermal degradation (average increase = 46.2%) was obtained for the same unmodified silica composite compared to pure epoxy, respectively.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962263

ABSTRACT

This paper presents a new type of black organic material-porous silica composite providing an extremely highly selective adsorption surface. This black composite was prepared by lamination on nano-sized pores with a carbon-like, π-extended structure, which can be converted via the on-site polymerization of 1,5-dihydroxynaphthalene with a triazinane derivative and a thermally induced condensation reaction with denitrification. This bottom-up fabrication method on porous materials had the great advantage of maintaining the pore characteristics of a raw porous material, but also the resultant black surface exhibited an extremely high molecular-shape selectivity; for example, that for trans- and cis-stilbenes reached 14.0 with the black layer-laminated porous silica, whereas it was below 1.2 with simple hydrophobized silica.

6.
Nanomaterials (Basel) ; 9(4)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30986965

ABSTRACT

Optical materials with high refractive index (n) have been rapidly improved because of urgent demands imposed by the development of advanced photonic and electronic devices such as solar cells, light emitting diodes (LED and Organic LED), optical lenses and filters, anti-reflection films, and optical adhesives. One successful method to obtain high refractive index materials is the blending of metal oxide nanoparticles such as TiO2 and ZrO2 with high n values of 2.1-2.7 into conventional polymers. However, these nanoparticles have a tendency to agglomerate by themselves in a conventional polymer matrix, due to the strong attractive forces between them. Therefore, there is a limitation in the blending amount of inorganic nanoparticles. In this paper, various hydrophilic polymers such as poly(N-hydroxyl acrylamide) (pHEAAm), poly(vinyl alcohol), poly(ethylene glycol), and poly(acrylic acid) were examined for preparation of high refractive index film based on titanium oxide nanoparticle (TiNP) dispersed polymer composite. The hydrogen bonding sites in these hydrophilic polymers would improve the dispersibility of inorganic nanoparticles in the polymer matrix. As a result, pHEAAm exhibited higher compatibility with titanium oxide nanoparticles (TiNPs) than other water-soluble polymers. Transparent hybrid films were prepared by mixing pHEAAm with TiNPs and drop casting the mixture onto a glass plate. The refractive indices of the films were in good agreement with calculated values. The compatibility of TiNPs with pHEAAm was dependent on the surface characteristics of TiNPs. TiNPs with the highest observed compatibility could be hybridized with pHEAAm at concentrations of up to 90 wt%, and the refractive index of the corresponding film reached 1.90. The high compatibility of TiNPs with pHEAAm may be related to the hydrophilicity and amide and hydroxyl moieties of pHEAAm, which cause hydrogen bond formation on the TiO2 surface. The obtained thin film was slightly yellow due to the color of the original TiNP dispersion; however, the transmittance of the film was higher than 80% in the wavelength range from 480 to 900 nm.

7.
Langmuir ; 33(40): 10679-10689, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28914544

ABSTRACT

Hollow silica microspheres with orderly protrusions on their outer and inner surfaces were fabricated in three simple steps: (1) suspension polymerization of a polymerizable monomer containing silica nanoparticles to obtain polymeric microspheres with a layered shell of silica particles; (2) sol-gel reaction of tetraethoxysilane (TEOS) on the surface of the microspheres to connect the silica nanoparticles; (3) removal of polymer core by calcination. The shell composed of silica-connected silica nanoparticles remained spherical even after calcination, and the characteristic surface morphology with protrusions were obtained on both inner and outer surfaces. Measurements of the mechanical strength revealed that the compression modulus of the hollow microspheres increased with increasing thickness of the silica layer, which could be controlled by changing the concentration of TEOS in the sol-gel reaction. Rapid heating of the hollow silica microspheres with the thin silica-connected layer led to silica shell cracking, and the cracks were mostly observed in the connecting layer between the silica nanoparticles. The stress was probably concentrated in the connecting layer because of its lower thickness than the nanoparticles. Such characteristic of the hollow microspheres is useful for a capsule with capability for heat-induced controlled cracking caused by internal pressure changes.

8.
Chem Commun (Camb) ; 53(65): 9147-9150, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28765852

ABSTRACT

Polymer microspheres with wrinkled hard surfaces composed of self-assembled silica nanoparticles were prepared via suspension polymerization. The polymer surface morphology could be controlled by changing the silica nanoparticle concentration in the monomer droplets. The wrinkles could trap small polystyrene particles in their grooves, thus demonstrating viability in separation science.

SELECTION OF CITATIONS
SEARCH DETAIL
...