Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 356: 141923, 2024 May.
Article in English | MEDLINE | ID: mdl-38599328

ABSTRACT

Poly- and perfluoroalkyl substances (PFAS) are a group of compounds with uses in industry and many consumer products. Concerns about the potential health effects of these compounds resulted in regulation by the Stockholm Convention on the use of three of the most common PFAS, including perfluorooctanoic acid (PFOA). Thousands of PFAS remain in production that are unregulated and for which their toxicity is unknown. Our group recently identified a new class of PFAS, fluorotelomer ethoxylates (FTEOs), in indoor dust and industrial wastewater. In this study, we investigated the effect of PFAS on placental metabolism by exposing healthy, pregnant CD-1 mice to PFOA or FTEOs at one of three concentrations (0 ng/L (controls), 5 ng/L, 100 ng/L) (n = 7-8/group). While PFOA is banned and PFOA concentrations in human blood are decreasing, we hypothesize that FTEOs will cause adverse pregnancy outcomes similar to PFOA, the compounds they were meant to replace. Placental tissue samples were collected at embryonic day 17.5 and 1H solid-state magic angle spinning nuclear magnetic resonance spectroscopy was used to determine the relative concentration of placental metabolites (n = 18-20/group). At the highest concentration, the relative concentrations of glucose and threonine were increased and the relative concentration of creatine was decreased in the PFOA-exposed placentas compared to controls (p < 0.05). In contrast, the relative concentrations of asparagine and lysine were decreased and the relative concentration of creatine was increased in the FTEOs-exposed placentas compared to controls (p < 0.05). Partial least squares - discriminant analysis showed the FTEOs-exposed and control groups were significantly separated (p < 0.005) and pathway analysis found four biochemical pathways were perturbed following PFOA exposure, while one pathway was altered following FTEOs exposure. Maternal exposure to PFOA and FTEOs had a significant impact on the placental metabolome, with the effect depending on the pollutant. This work motivates further studies to determine exposure levels and evaluate associations with adverse outcomes in human pregnancies.


Subject(s)
Caprylates , Fluorocarbons , Placenta , Fluorocarbons/toxicity , Female , Animals , Pregnancy , Caprylates/toxicity , Mice , Placenta/metabolism , Placenta/drug effects , Environmental Pollutants/toxicity
2.
Sci Rep ; 14(1): 399, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172192

ABSTRACT

While microplastics have been recently detected in human blood and the placenta, their impact on human health is not well understood. Using a mouse model of environmental exposure during pregnancy, our group has previously reported that exposure to polystyrene micro- and nanoplastics throughout gestation results in fetal growth restriction. While polystyrene is environmentally relevant, polyethylene is the most widely produced plastic and amongst the most commonly detected microplastic in drinking water and human blood. In this study, we investigated the effect of maternal exposure to polyethylene micro- and nanoplastics on fetal growth and placental function. Healthy, pregnant CD-1 dams were divided into three groups: 106 ng/L of 740-4990 nm polyethylene with surfactant in drinking water (n = 12), surfactant alone in drinking water (n = 12) or regular filtered drinking water (n = 11). At embryonic day 17.5, high-frequency ultrasound was used to investigate the placental and fetal hemodynamic responses following exposure. While maternal exposure to polyethylene did not impact fetal growth, there was a significant effect on placental function with a 43% increase in umbilical artery blood flow in the polyethylene group compared to controls (p < 0.01). These results suggest polyethylene has the potential to cause adverse pregnancy outcomes through abnormal placental function.


Subject(s)
Drinking Water , Placenta , Humans , Pregnancy , Female , Placenta/blood supply , Microplastics , Plastics , Maternal Exposure/adverse effects , Polyethylene/toxicity , Polystyrenes , Fetal Development , Pregnancy Outcome , Hemodynamics , Fetal Growth Retardation , Surface-Active Agents
3.
Biol Reprod ; 110(1): 211-218, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37724921

ABSTRACT

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.


Subject(s)
Microplastics , Plastics , Pregnancy , Female , Humans , Animals , Mice , Polystyrenes/toxicity , Placenta/blood supply , Fetal Development
SELECTION OF CITATIONS
SEARCH DETAIL
...