Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-512134

ABSTRACT

The recently identified, globally predominant SARS-CoV-2 Omicron variant (BA.1) is highly transmissible, even in fully vaccinated individuals, and causes attenuated disease compared with other major viral variants recognized to date1-7. The Omicron spike (S) protein, with an unusually large number of mutations, is considered the major driver of these phenotypes3,8. We generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron in the backbone of an ancestral SARS-CoV-2 isolate and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escapes vaccine-induced humoral immunity, mainly due to mutations in the receptor-binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicates in cell lines and primary-like distal lung cells. In K18-hACE2 mice, while Omicron causes mild, non-fatal infection, the Omicron S-carrying virus inflicts severe disease with a mortality rate of 80%. This indicates that while the vaccine escape of Omicron is defined by mutations in S, major determinants of viral pathogenicity reside outside of S.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-452554

ABSTRACT

The majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a negative regulator of IFN responses), by macrophages was unique to HNFL mice and represented a prominent correlate of reduced inflammation and histopathology. Altogether, our work shed light on unique cellular and molecular correlates of lung tissue protection during SARS-CoV-2 infection, and underscores macrophage IFN responses as prime targets for developing immunotherapies against coronavirus respiratory diseases. HIGHLIGHTSO_LIMice engrafted with human fetal lung xenografts (fLX-mice) are highly susceptible to SARS-CoV-2. C_LIO_LICo-engraftment with a human myeloid-enriched immune system protected fLX-mice against infection. C_LIO_LITissue protection was defined by a potent and well-balanced antiviral response mediated by infiltrating macrophages. C_LIO_LIProtective IFN response was dominated by the upregulation of the USP18-ISG15 axis. C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...