Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 46(Suppl 1): 81-93, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116688

ABSTRACT

The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.


Subject(s)
Climate Change , Ecological Parameter Monitoring , Meteorological Concepts , Arctic Regions , Greenland , Ice Cover , Permafrost , Snow , Tundra
2.
Glob Chang Biol ; 21(6): 2410-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25788025

ABSTRACT

Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910-1930 to 1990-2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991-1996) and a positive effect on Betula nana radial growth, to a period (1997-2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed 'greening of the Arctic' which may further accelerate in future years due to both direct and indirect effects of winter warming.


Subject(s)
Betula/physiology , Ice Cover , Snow , Temperature , Arctic Regions , Climate Change , Greenland , Seasons , Soil , Tundra
3.
BMC Ecol ; 7: 9, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17880678

ABSTRACT

BACKGROUND: Changes in land surface phenology are of major importance to the understanding of the impact of recent and future climate changes in the Arctic. This paper presents an extensive study from Zackenberg Ecological Research Operations (ZERO) where snow melt, climate and growing season characteristics of six major high arctic vegetation types has been monitored during 1999 to 2005. We investigate the growth dynamics for dry, mesic and wet types using hand held measurements of far red normalised difference vegetation index (NDVI-FR) and generalized additive mixed models (GAMM). RESULTS: Snow melt and temperature are of major importance for the timing of the maximum growth as well as for the seasonal growth. More than 85% of the variance in timing of the maximum growth is explained by the models and similar for the seasonal growth of mesic and wet vegetation types. We find several non-linear growth responses to the environmental variables. CONCLUSION: We conclude that the uses of GAMMs are valuable for investigating growth dynamics in the Arctic. Contrary to several other studies in the Arctic we found a significant decreasing trend of the seasonally integrated NDVI-FR (SINDVI) in some vegetation types. This indicates that although greening might occur wide-spread in the Arctic there are variations on the local scale that might influence the regional trends on the longer term.


Subject(s)
Cold Climate , Ecology , Environmental Monitoring , Models, Biological , Plants , Arctic Regions , Greenland , Seasons , Snow
4.
Environ Sci Technol ; 41(7): 2407-13, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17441279

ABSTRACT

Acid mine drainage (known as AMD) is a well-known environmental problem resulting from the oxidation of sulfidic mine waste. In cold regions, AMD is often considered limited by low temperatures most of the year and observed environmental impact is related to pollution generated during the warm summer period. Here we show that heat generation within an oxidizing, sulfidic, coal-mining waste-rock pile in Svalbard (78 degrees N) is high enough to keep the pile warm (roughly 5 degrees C throughout the year) despite mean annual air temperatures below -5 degrees C. Consequently, weathering processes continue year-round within the waste-rock pile. During the winter, weathering products accumulate within the pile because of a frozen outer layer on the pile and are released as a flush within 2 weeks of soil thawing in the spring. Consequently, spring runoff water contains elevated concentrations of metals. Several of these metals are taken up and accumulated in plants where they reach phytotoxic levels, including aluminum and manganese. Laboratory experiments document that uptake of Al and Mn in native plant species is highly correlated with dissolved concentrations. Therefore, future remedial actions to control the adverse environmental impacts of cold region coal-mining need to pay more attention to winter processes including AMD generation and accumulation of weathering products.


Subject(s)
Environmental Monitoring/statistics & numerical data , Mining , Plants/drug effects , Seasons , Temperature , Waste Products/analysis , Water Pollutants, Chemical/analysis , Analysis of Variance , Arctic Regions , Metals, Heavy/analysis , Metals, Heavy/toxicity , Models, Chemical , Plants/metabolism , Soil/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...