Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 6(2): 101-9, 2015.
Article in English | MEDLINE | ID: mdl-25648687

ABSTRACT

Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations measured in diabetic and non-diabetic mice at 30 weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3(+) regulatory T cells, CD11b(+) dendritic cells, and IFN-γ production. The model proposed in this work suggests that operational taxonomic units classified to S24-7, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all Firmicutes) promote pathogenesis.


Subject(s)
Dendritic Cells/immunology , Diabetes Mellitus, Type 1/pathology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Interferon-gamma/analysis , Lymphocyte Subsets/immunology , Animals , Bacteria/classification , Bacteria/genetics , Feces/microbiology , Mice, Inbred NOD
2.
Eur J Immunol ; 45(3): 865-75, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25404161

ABSTRACT

TL1A is a proinflammatory cytokine, which is prevalent in the gut. High TL1A concentrations are present in patients with inflammatory bowel disease (IBD) and in IBD mouse models. However, the role of TL1A during steady-state conditions is relatively unknown. Here, we used TL1A knockout (KO) mice to analyse the impact of TL1A on the intestinal immune system and gut microbiota. The TL1A KO mice showed reduced amounts of small intestinal intraepithelial TCRγδ(+) and CD8(+) T cells, and reduced expression of the activating receptor NKG2D. Moreover, the TL1A KO mice had significantly reduced body weight and visceral adipose tissue deposits, as well as lower levels of leptin and CXCL1, compared with wild-type mice. Analysis of the gut microbial composition of TL1A KO mice revealed a reduction of caecal Clostridial cluster IV, a change in the Firmicutes/Bacteroidetes ratio in caecum and less Lactobacillus spp. in the mucosal ileum. Our results show that TL1A deficiency impacts on the gut microbial composition and the mucosal immune system, especially the intraepithelial TCRγδ(+) T-cell subset, and that TL1A is involved in the establishment of adipose tissue. This research contributes to a broader understanding of TL1A inhibition, which is increasingly considered for treatment of IBD.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Clostridium/immunology , Intestinal Mucosa , Lactobacillus/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Tumor Necrosis Factor Ligand Superfamily Member 15/immunology , Adipose Tissue/immunology , Adipose Tissue/pathology , Animals , CD8-Positive T-Lymphocytes/pathology , Chemokine CXCL1/genetics , Chemokine CXCL1/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics
3.
Res Vet Sci ; 96(2): 241-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24556473

ABSTRACT

Gut microbiota have been implicated as a relevant factor in the development of type 2 diabetes mellitus (T2DM), and its diversity might be a cause of variation in animal models of T2DM. In this study, we aimed to characterise the gut microbiota of a T2DM mouse model with a long term vision of being able to target the gut microbiota to reduce the number of animals used in experiments. Male B6.V-Lep(ob)/J mice were characterized according to a number of characteristics related to T2DM, inflammation and gut microbiota. All findings were thereafter correlated to one another in a linear regression model. The total gut microbiota profile correlated to glycated haemoglobin, and high proportions of Prevotellaceae and Lachnospiraceae correlated to impaired or improved glucose intolerance, respectively. In addition, Akkermansia muciniphila disappeared with age as glucose intolerance worsened. A high proportion of regulatory T cells correlated to the gut microbiota and improved glucose tolerance. Furthermore, high levels of IL-10, IL-12 and TNF-α correlated to impaired glucose tolerance, blood glucose or glycated haemoglobin. The findings indicate that gut microbiota may contribute to variation in various disease read-outs in the B6.V-Lep(ob)/J model and considering them in both quality assurance and data evaluation for the B6.V-Lep(ob)/J model may have a reducing impact on the inter-individual variation.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Tract/microbiology , Inflammation/microbiology , Microbiota/immunology , Animals , Blood Glucose/analysis , Body Weight/immunology , Cytokines/blood , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Diabetes Mellitus, Type 2/immunology , Disease Models, Animal , Gastrointestinal Tract/immunology , Glucose Tolerance Test , Inflammation/immunology , Insulin/blood , Linear Models , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Microbiota/genetics , Polymerase Chain Reaction , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics
4.
J Diabetes Res ; 2013: 319321, 2013.
Article in English | MEDLINE | ID: mdl-24369539

ABSTRACT

Ampicillin has been shown to improve glucose tolerance in mice. We hypothesized that this effect is present only if treatment is initiated prior to weaning and that it disappears when treatment is terminated. High-fat fed C57BL/6NTac mice were divided into groups that received Ampicillin at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study termination, expressions of mRNA coding for tumor necrosis factor, serum amyloid A, and lactase were upregulated, while the expression of tumor necrosis factor (ligand) superfamily member 15 was downregulated in the ileum of Ampicillin-treated mice. Higher dendritic cell percentages were found systemically in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well as development of gut immunity and that this window may disappear after weaning.


Subject(s)
Ampicillin/therapeutic use , Blood Glucose/drug effects , Glucose Intolerance/prevention & control , Obesity/drug therapy , Animals , Dendritic Cells/drug effects , Dendritic Cells/pathology , Diet, High-Fat , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Glucose Intolerance/blood , Glucose Intolerance/immunology , Glucose Tolerance Test , Mice , Mice, Inbred C57BL , Mice, Obese , Microbiota/drug effects , Obesity/blood , Obesity/etiology , Obesity/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/pathology
5.
Diabetologia ; 55(8): 2285-94, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22572803

ABSTRACT

AIMS/HYPOTHESIS: Increasing evidence suggests that environmental factors changing the normal colonisation pattern in the gut strongly influence the risk of developing autoimmune diabetes. The aim of this study was to investigate, both during infancy and adulthood, whether treatment with vancomycin, a glycopeptide antibiotic specifically directed against Gram-positive bacteria, could influence immune homeostasis and the development of diabetic symptoms in the NOD mouse model for diabetes. METHODS: Accordingly, one group of mice received vancomycin from birth until weaning (day 28), while another group received vancomycin from 8 weeks of age until onset of diabetes. Pyrosequencing of the gut microbiota and flow cytometry of intestinal immune cells was used to investigate the effect of vancomycin treatment. RESULTS: At the end of the study, the cumulative diabetes incidence was found to be significantly lower for the neonatally treated group compared with the untreated group, whereas the insulitis score and blood glucose levels were significantly lower for the mice treated as adults compared with the other groups. Mucosal inflammation was investigated by intracellular cytokine staining of the small intestinal lymphocytes, which displayed an increase in cluster of differentiation (CD)4(+) T cells producing pro-inflammatory cytokines in the neonatally treated mice. Furthermore, bacteriological examination of the gut microbiota composition by pyrosequencing revealed that vancomycin depleted many major genera of Gram-positive and Gram-negative microbes while, interestingly, one single species, Akkermansia muciniphila, became dominant. CONCLUSIONS/INTERPRETATION: The early postnatal period is a critical time for microbial protection from type 1 diabetes and it is suggested that the mucolytic bacterium A. muciniphila plays a protective role in autoimmune diabetes development, particularly during infancy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 1/prevention & control , Islets of Langerhans/drug effects , Vancomycin/pharmacology , Algorithms , Analysis of Variance , Animals , Animals, Newborn , Bacteria/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/immunology , Female , Flow Cytometry , Incidence , Islets of Langerhans/immunology , Male , Mice , Mice, Inbred NOD , Mucins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...