Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 615(7950): 111-116, 2023 03.
Article in English | MEDLINE | ID: mdl-36813962

ABSTRACT

Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.


Subject(s)
Cryptochromes , Drosophila melanogaster , Magnetic Fields , Animals , Cryptochromes/chemistry , Cryptochromes/metabolism , Drosophila melanogaster/chemistry , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Flavin-Adenine Dinucleotide/metabolism , Tryptophan/metabolism , Electrophysiology , Behavior, Animal , Single-Cell Analysis , Neurons/cytology , Neurons/metabolism
3.
Front Physiol ; 11: 145, 2020.
Article in English | MEDLINE | ID: mdl-32210832

ABSTRACT

We have used the Cambridge Protein Trap resource (CPTI) to screen for flies whose locomotor rhythms are rhythmic in constant light (LL) as a means of identifying circadian photoreception genes. From the screen of ∼150 CPTI lines, we obtained seven hits, two of which targeted the glutamate pathway, Got1 (Glutamate oxaloacetate transaminase 1) and Gs2 (Glutamine synthetase 2). We focused on these by employing available mutants and observed that variants of these genes also showed high levels of LL rhythmicity compared with controls. It was also clear that the genetic background was important with a strong interaction observed with the common and naturally occurring timeless (tim) polymorphisms, ls-tim and s-tim. The less circadian photosensitive ls-tim allele generated high levels of LL rhythmicity in combination with Got1 or Gs2, even though ls-tim and s-tim alleles do not, by themselves, generate the LL phenotype. The use of dsRNAi for both genes as well as for Gad (Glutamic acid decarboxylase) and the metabotropic glutamate receptor DmGluRA driven by clock gene promoters also revealed high levels of LL rhythmicity compared to controls. It is clear that the glutamate pathway is heavily implicated in circadian photoreception. TIM levels in Got1 and Gs2 mutants cycled and were more abundant than in controls under LL. Got1 but not Gs2 mutants showed diminished phase shifts to 10 min light pulses. Neurogenetic dissection of the LL rhythmic phenotype using the gal4/gal80 UAS bipartite system suggested that the more dorsal CRY-negative clock neurons, DNs and LNds were responsible for the LL phenotype. Immunocytochemistry using the CPTI YFP tagged insertions for the two genes revealed that the DN1s but not the DN2 and DN3s expressed Got1 and Gs2, but expression was also observed in the lateral neurons, the LNds and s-LNvs. Expression of both genes was also found in neuroglia. However, downregulation of glial Gs2 and Got1 using repo-gal4 did not generate high levels of LL rhythmicity, so it is unlikely that this phenotype is mediated by glial expression. Our results suggest a model whereby the DN1s and possibly CRY-negative LNds use glutamate signaling to supress the pacemaker s-LNvs in LL.

4.
Front Physiol ; 10: 941, 2019.
Article in English | MEDLINE | ID: mdl-31396106

ABSTRACT

Drosophila suzukii (Matsumara) also called Spotted Wing Drosophila (SWD), is an invasive pest species originally from Asia that has now spread widely across Europe and North America. The majority of drosophilids including the best known Drosophila melanogaster only breed on decaying fruits. On the contrary, the presence of a strong serrated ovipositor and behavioural and metabolic adaptations allow D. suzukii to lay eggs inside healthy, ripening fruits that are still on the plant. Here we present an analysis of the rhythmic locomotor activity behaviour of D. suzukii under several laboratory settings. Moreover, we identify the canonical clock neurons in this species by reporting the expression pattern of the major clock proteins in the brain. Interestingly, a fundamentally similar organisation of the clock neurons network between D. melanogaster and D. suzukii does not correspond to similar characteristics in rhythmic locomotor activity behaviour.

5.
Proc Natl Acad Sci U S A ; 112(28): 8702-7, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124142

ABSTRACT

Under standard laboratory conditions of rectangular light/dark cycles and constant warm temperature, Drosophila melanogaster show bursts of morning (M) and evening (E) locomotor activity and a "siesta" in the middle of the day. These M and E components have been critical for developing the neuronal dual oscillator model in which clock gene expression in key cells generates the circadian phenotype. However, under natural European summer conditions of cycling temperature and light intensity, an additional prominent afternoon (A) component that replaces the siesta is observed. This component has been described as an "artifact" of the TriKinetics locomotor monitoring system that is used by many circadian laboratories world wide. Using video recordings, we show that the A component is not an artifact, neither in the glass tubes used in TriKinetics monitors nor in open-field arenas. By studying various mutants in the visual and peripheral and internal thermo-sensitive pathways, we reveal that the M component is predominantly dependent on visual input, whereas the A component requires the internal thermo-sensitive channel transient receptor potential A1 (TrpA1). Knockdown of TrpA1 in different neuronal groups reveals that the reported expression of TrpA1 in clock neurons is unlikely to be involved in generating the summer locomotor profile, suggesting that other TrpA1 neurons are responsible for the A component. Studies of circadian rhythms under seminatural conditions therefore provide additional insights into the molecular basis of circadian entrainment that would otherwise be lost under the usual standard laboratory protocols.


Subject(s)
Circadian Rhythm , Drosophila Proteins/physiology , Drosophila/physiology , TRPC Cation Channels/physiology , Animals , Drosophila Proteins/metabolism , Ion Channels , Neurons/metabolism , TRPA1 Cation Channel , TRPC Cation Channels/metabolism
6.
Front Neurol ; 6: 100, 2015.
Article in English | MEDLINE | ID: mdl-26097463

ABSTRACT

The circadian clock provides the temporal framework for rhythmic behavioral and metabolic functions. In the modern era of industrialization, work, and social pressures, clock function is jeopardized, and can result in adverse and chronic effects on health. Understanding circadian clock function, particularly individual variation in diurnal phase preference (chronotype), and the molecular mechanisms underlying such chronotypes may lead to interventions that could abrogate clock dysfunction and improve human (and animal) health and welfare. Our preliminary studies suggested that fruit-flies, like humans, can be classified as early rising "larks" or late rising "owls," providing a convenient model system for these types of studies. We have identified strains of flies showing increased preference for morning emergence (Early or E) from the pupal case, or more pronounced preference for evening emergence (Late or L). We have sampled pupae the day before eclosion (fourth day after pupariation) at 4 h intervals in the E and L strains, and examined differences in gene expression by RNA-seq. We have identified differentially expressed transcripts between the E and L strains, which provide candidate genes for subsequent studies of Drosophila chronotypes and their human orthologs.

7.
Development ; 141(20): 3994-4005, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25294943

ABSTRACT

Although we now have a wealth of information on the transcription patterns of all the genes in the Drosophila genome, much less is known about the properties of the encoded proteins. To provide information on the expression patterns and subcellular localisations of many proteins in parallel, we have performed a large-scale protein trap screen using a hybrid piggyBac vector carrying an artificial exon encoding yellow fluorescent protein (YFP) and protein affinity tags. From screening 41 million embryos, we recovered 616 verified independent YFP-positive lines representing protein traps in 374 genes, two-thirds of which had not been tagged in previous P element protein trap screens. Over 20 different research groups then characterized the expression patterns of the tagged proteins in a variety of tissues and at several developmental stages. In parallel, we purified many of the tagged proteins from embryos using the affinity tags and identified co-purifying proteins by mass spectrometry. The fly stocks are publicly available through the Kyoto Drosophila Genetics Resource Center. All our data are available via an open access database (Flannotator), which provides comprehensive information on the expression patterns, subcellular localisations and in vivo interaction partners of the trapped proteins. Our resource substantially increases the number of available protein traps in Drosophila and identifies new markers for cellular organelles and structures.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Membrane Proteins/metabolism , Animals , Bacterial Proteins/chemistry , Crosses, Genetic , Exons , Female , Genetic Techniques , Genome , Luminescent Proteins/chemistry , Male , Ovary/metabolism , Sex Factors , Testis/metabolism , Transcription, Genetic
8.
Curr Biol ; 24(19): 2257-66, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25220056

ABSTRACT

BACKGROUND: In the fruit fly Drosophila melanogaster, interlocked negative transcription/translation feedback loops provide the core of the circadian clock that generates rhythmic phenotypes. Although the current molecular model portrays the oscillator as cell autonomous, cross-talk among clock neurons is essential for robust cycling behavior. Nevertheless, the functional organization of the neuronal network remains obscure. RESULTS: Here we show that shortening or lengthening of the circadian period of locomotor activity can be obtained either by targeting different groups of clock cells with the same genetic manipulation or by challenging the same group of cells with activators and repressors of neuronal excitability. CONCLUSIONS: Based on these observations we interpret circadian rhythmicity as an emerging property of the circadian network and we propose an initial model for its architectural design.


Subject(s)
Circadian Rhythm , Drosophila melanogaster/physiology , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation , Larva/genetics , Larva/physiology , Motor Activity
9.
Lung Cancer ; 50(3): 329-37, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16115696

ABSTRACT

Small cell lung cancer (SCLC) is a malignant disease, for which no satisfactory treatment is presently available and consequently, new specific therapeutic targets are in high demand. A global gene expression analysis previously performed, identified the neuronal pentraxin receptor (NPR) as highly and relatively specifically expressed in SCLC, consistent with the neuroendocrine features of this cancer. Normally, NPR is exclusively expressed in neurons, where it associates with the homologous proteins neuronal pentraxins 1 and 2 (NP1 and NP2) in complexes capable of binding the snake venom neurotoxin taipoxin. The purpose of the present study was to assess the toxic effect of taipoxin in SCLC-cell lines and to determine if toxicity correlates to NPR and NP1 and NP2 expression levels. NPR was detected by Western blot analysis in all the tested SCLC and in control cell lines of different origin. The receptor co-purified with cell membrane in SCLC, indicating that NPR is surface associated. Microarray signals for NP1 and NP2mRNA was detected in a subset of SCLC-cell lines and validated by Northern blot analysis. Furthermore, NP1 protein was detected by Western blot analysis in a few SCLC-cell lines, but not in the control cell lines. A number of SCLC-cell lines showed marked sensitivity to taipoxin (IC50: 3-130 nM) at toxin concentrations leaving the control cell lines unaffected. The sensitivity to taipoxin did not correlate with the expression levels of NP1 protein and NP2-mRNA, suggesting that expression of these proteins may not be required for taipoxin induced toxicity in SCLC. The demonstrated toxic effect of taipoxin in SCLC may prove to be of importance for designing novel specific treatment modalities for this disease.


Subject(s)
Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Elapid Venoms/pharmacology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Blotting, Northern , Blotting, Western , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/genetics , Cell Line, Tumor , DNA, Neoplasm/analysis , DNA, Neoplasm/genetics , Elapid Venoms/therapeutic use , Elapid Venoms/toxicity , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...