Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Behav Neurosci ; 7: 95, 2013.
Article in English | MEDLINE | ID: mdl-23908610

ABSTRACT

Dopaminergic medication for motor symptoms in Parkinson's disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-making, and altered striatal dopaminergic neurotransmission. Using [(11)C]raclopride with positron emission tomography, we assessed dopaminergic neurotransmission during Iowa Gambling Task performance. Here we present data from a single patient with PD and concomitant PG. We noted a marked decrease in [(11)C]raclopride binding in the left ventral striatum upon gambling, indicating a gambling-induced dopamine release. The results imply that PG in PD is associated with a high dose of dopaminergic medication, pronounced motor symptomatology, young age at disease onset, high propensity for sensation seeking, and risky decision-making. Overall, the findings are consistent with the hypothesis of medication-related PG in PD and underscore the importance of taking clinical variables, such as age and personality, into account when patients with PD are medicated, to reduce the risk of PG.

2.
Rev Sci Instrum ; 84(7): 073701, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902070

ABSTRACT

To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface potential. The improved CAHT-SPM, therefore, holds a great potential for local sub-micron analysis of high-temperature and gas induced changes of a wide range of materials.

3.
Eur J Nucl Med Mol Imaging ; 40(2): 186-97, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23076620

ABSTRACT

PURPOSE: Tumour hypoxia is linked to treatment resistance. Positron emission tomography (PET) using hypoxia tracers such as fluoroazomycin arabinoside (FAZA) may allow identification of patients with hypoxic tumours and the monitoring of the efficacy of hypoxia-targeting treatment. Since hypoxia PET is characterized by poor image contrast, and tumour hypoxia undergoes spontaneous changes and is affected by therapy, it remains unclear to what extent PET scans are reproducible. Tumour-bearing mice are valuable in the validation of hypoxia PET, but identification of a reliable reference tissue value (blood sample or image-derived muscle value) for repeated scans may be difficult due to the small size of the animal or absence of anatomical information (pure PET). Here tumour hypoxia was monitored over time using repeated PET scans in individual tumour-bearing mice before and during fractionated radiotherapy. METHODS: Mice bearing human SiHa cervix tumour xenografts underwent a PET scan 3 h following injection of FAZA on two consecutive days before initiation of treatment (baseline) and again following irradiation with four and ten fractions of 2.5 Gy. On the last scan day, mice were given an intraperitoneal injection of pimonidazole (hypoxia marker), tumours were collected and the intratumoral distribution of FAZA (autoradiography) and hypoxia (pimonidazole immunohistology) were determined in cryosections. RESULTS: Tissue section analysis revealed that the intratumoral distribution of FAZA was strongly correlated with the regional density of hypoxic (pimonidazole-positive) cells, even when necrosis was present, suggesting that FAZA PET provides a reliable measure of tumour hypoxia at the time of the scan. PET-based quantification of tumour tracer uptake relative to injected dose showed excellent reproducibility at baseline, whereas normalization using an image-derived nonhypoxic reference tissue (muscle) proved highly unreliable since a valid and reliable reference value could not be determined. The intratumoral distribution of tracer was stable at baseline as shown by a voxel-by-voxel comparison of the two scans (R = 0.82, range 0.72-0.90). During treatment, overall tracer retention changed in individual mice, but there was no evidence of general reoxygenation. CONCLUSION: Hypoxia PET scans are quantitatively correct and highly reproducible in tumour-bearing mice. Preclinical hypoxia PET is therefore a valuable and reliable tool for the development of strategies that target or modify hypoxia.


Subject(s)
Hypoxia , Nitroimidazoles/pharmacology , Positron-Emission Tomography/methods , Radiotherapy/methods , Uterine Cervical Neoplasms/pathology , Animals , Body Weight , Cell Line, Tumor , Collagen/pharmacology , Dose Fractionation, Radiation , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Drug Combinations , Female , Fluorine Radioisotopes/pharmacology , Humans , Image Processing, Computer-Assisted , Laminin/pharmacology , Mice , Mice, Nude , Neoplasm Transplantation , Proteoglycans/pharmacology , Uterine Cervical Neoplasms/metabolism
4.
Acta Anaesthesiol Scand ; 56(2): 248-55, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22091956

ABSTRACT

BACKGROUND: General anaesthetics can alter the relationship between regional cerebral glucose metabolism rate (rGMR) and regional cerebral blood flow (rCBF). With the present study, we wanted to assess quantitatively the effects of propofol on rCBF and rGMR in the same healthy volunteers measured with positron emission tomography (PET). METHODS: (15)O-labelled water and (18)F fluorodeoxyglucose were used as PET tracers to determine rCBF and rGMR, respectively, in eight healthy volunteers during the waking state (baseline) and during propofol anaesthesia. Propofol was titrated to keep a constant hypnotic depth (Bispectral Indes 35-40) throughout the anaesthesia. Changes in rGMR and rCBF were quantified using region-of-interest and voxel-based analyses. RESULTS: The measured mean propofol concentration was 4.1 ± 0.8 µg/ml during anaesthesia. Compared with the conscious state, total CBF and GMR decreased during the anaesthetic state with 47% and 54%, respectively. In the white and grey matter, rCBF and rGMR were reduced by 37% and 49%, and by 45% and 57%, respectively. Propofol decreased rCBF in all brain structures by 46-55% (P ≤ 0.01) with highest significant decreases in the thalamus and parietal lobe. Regional GMR was reduced in all brain areas to 48-66% (P ≤ 0.01) with highest significant reductions in the occipital lobe, the lingual gyrus, parietal lobe, temporal lobe and thalamus. No increases in rCBF or rGMR happened anywhere. CONCLUSIONS: General anaesthesia with propofol is associated with a global metabolic and vascular depression in the human brain, with significant shifts in regional blood flow and metabolism indicating marked metabolic and vascular responsiveness in some cortical areas and thalamus.


Subject(s)
Anesthesia, Intravenous , Anesthetics, Intravenous , Cerebrovascular Circulation/physiology , Glucose/metabolism , Propofol , Adult , Blood Gas Monitoring, Transcutaneous , Blood Pressure/physiology , Brain/diagnostic imaging , Brain Chemistry/physiology , Consciousness Monitors , Female , Fluorodeoxyglucose F18 , Humans , Laryngeal Masks , Magnetic Resonance Imaging , Oxygen Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Water , Young Adult
5.
J Microsc ; 244(1): 45-58, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21631501

ABSTRACT

In electrochemical devices such as fuel cells or batteries the microstructure is a determining factor for the performance of the device. To be able to optimize the microstructure it is important to be able to quantitatively measure key structural parameters, such that systematic studies can be made. We present several general methods for quantitative characterization of network structures without prior assumptions of shape or application. The characterization is performed by extracting distributions of values rather than single value descriptions, thus allowing more detailed comparisons between samples to be made. The methods characterize tortuosity, path diameters, the novel dead ends property and a particle shape independent alternative to a particle size distribution. The parameters are calculated by the computation of arrival time maps by the fast marching method. The methods are applied to the analysis of each of the three phases in a solid oxide fuel cell sample.

6.
Acta Anaesthesiol Scand ; 54(5): 603-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20085540

ABSTRACT

BACKGROUND: The precise mechanism by which sevoflurane exerts its effects in the human brain remains unknown. In the present study, we quantified the effects of sevoflurane on regional cerebral glucose metabolism (rGMR) in the human brain measured with positron emission tomography. METHODS: Eight volunteers underwent two dynamic 18F-fluorodeoxyglucose positron emission tomography (PET) scans. One scan assessed conscious-baseline metabolism and the other scan assessed metabolism during 1 minimum alveolar concentration (MAC) sevoflurane anaesthesia. Cardiovascular and respiratory parameters were monitored and bispectral index responses were registered. Statistical parametric maps and conventional regions of interest analysis were used to determine rGMR differences. RESULTS: All subjects were unconsciousness at 1.0 MAC sevoflurane. Cardiovascular and respiratory parameters were constant over time. In the awake state, rGMR ranged from 0.24 to 0.35 mumol/g/min in the selected regions. Compared with the conscious state, total GMR decreased 56% in sevoflurane anaesthesia. In white and grey matter, GMR was averaged 42% and 58% of normal, respectively. Sevoflurane reduced the absolute rGMR in all selected areas by 48-71% of the baseline (P< or = 0.01), with the most significant reductions in the lingual gyrus (71%), occipital lobe in general (68%) and thalamus (63%). No increases in rGMR were observed. CONCLUSIONS: Sevoflurane caused a global whole-brain metabolic reduction of GMR in all regions of the human brain, with the most marked metabolic suppression in the lingual gyrus, thalamus and occipital lobe.


Subject(s)
Anesthetics, Inhalation/pharmacology , Brain/drug effects , Glucose/metabolism , Methyl Ethers/pharmacology , Adult , Brain/diagnostic imaging , Brain/metabolism , Electroencephalography/drug effects , Female , Fluorodeoxyglucose F18 , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals , Sevoflurane , Young Adult
7.
Ultramicroscopy ; 110(3): 216-28, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20006441

ABSTRACT

Routine use of quantitative three dimensional analysis of material microstructure by in particular, focused ion beam (FIB) serial sectioning is generally restricted by the time consuming task of manually delineating structures within each image slice or the quality of manual and automatic segmentation schemes. We present here a framework for performing automatic segmentation of complex microstructures using a level set method. The technique is based on numerical approximations to partial differential equations to evolve a 3D surface to capture the phase boundaries. Vector fields derived from the experimentally acquired data are used as the driving forces. The framework performs the segmentation in 3D rather than on a slice by slice basis. It naturally supplies sub-voxel precision of segmented surfaces and allows constraints on the surface curvature to enforce a smooth surface in the segmentation. Two applications of the framework are illustrated using solid oxide cell materials as examples.

8.
Stud Health Technol Inform ; 81: 256-62, 2001.
Article in English | MEDLINE | ID: mdl-11317752

ABSTRACT

As a joined project between Aalborg University and Aalborg Hospital Denmark, a neuro-surgical simulator is being developed. In this paper the objective of the project is outlined and an overview of the research activities within the project is given. Focus is on 3D modelling of the brain, deformable models and the development of two demonstrators, including one for training of punctuation of ventricle using visual and haptic feedback.


Subject(s)
Anatomy, Cross-Sectional , Computer Simulation , Neurosurgery , User-Computer Interface , Feedback , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Software Design , Ventriculostomy
9.
IEEE Trans Image Process ; 5(12): 1651-61, 1996.
Article in English | MEDLINE | ID: mdl-18290082

ABSTRACT

A new algorithm for fast curve parameter estimation based on the generalized Radon transform is proposed. The algorithm works on binary images, obtained, e.g., by edge filtering or deconvolution. The fundamental idea of the suggested algorithm is the use of a precondition map to reduce the computational cost of the generalized Radon transform. The precondition map is composed of irregular regions in the parameter domain, which contain peaks that represent curves in the image. To generate the precondition map, a fast mapping procedure named image point mapping is developed. As the image point mapping scheme maps image points into the corresponding parameter values in the parameter domain, it is possible to improve computational efficiency by recognizing image points with value zero. Initially, the suggested algorithm estimates the precondition map and subsequently applies the generalized Radon transform within the regions specified by the precondition map. The required parameter domain sampling and the resulting blurring are also investigated. The suggested algorithm is successfully applied to the identification of hyperbolas in seismic images, and two numerical examples are given.

10.
IEEE Trans Image Process ; 3(3): 281-91, 1994.
Article in English | MEDLINE | ID: mdl-18291926

ABSTRACT

A new algorithm for successive identification of seismic reflections is proposed. Generally, the algorithm can be viewed as a curve matching method for images with specific structure. However, in the paper, the algorithm works on seismic signals assembled to constitute an image in which the investigated reflections produce curves. In numerical examples, the authors work on signals assembled in CMP gathers. The key idea of the algorithm is to estimate the reflection curve parameters and the reflection coefficients along these curves by combining the multipulse technique and the generalized Radon transform. The multipulse technique is used for wavelet identification in each trace, and the generalized Radon transform is used to coordinate the wavelet identification between the individual traces. Furthermore, a stop criterion and a reflection validation procedure are presented. The stop criterion stops the reflection estimation when the actual estimated reflection is insignificant. The reflection validation procedure ensures that the estimated reflections follow the shape of the investigated reflection curves. The algorithm is successfully used in two numerical examples. One is based on a synthetic CMP gather, whereas the other is based on a real recorded CMP gather. Initially, the algorithm requires an estimate of the wavelet that can be performed by any wavelet estimation method.

SELECTION OF CITATIONS
SEARCH DETAIL
...