Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 23(10): 1158-1166, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846099

ABSTRACT

Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-ß superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15-GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.


Subject(s)
Eating/drug effects , Energy Metabolism/drug effects , Glial Cell Line-Derived Neurotrophic Factor Receptors/drug effects , Growth Differentiation Factor 15/pharmacology , Obesity/metabolism , Weight Loss/drug effects , Animals , Eating/genetics , Energy Metabolism/genetics , Flow Cytometry , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Surface Plasmon Resonance , Weight Loss/genetics
2.
J Clin Pharmacol ; 43(6): 649-60, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12817528

ABSTRACT

The object of this study was to analyze drug interactions between repaglinide, a short-acting insulin secretagogue, and five other drugs interacting with CYP3A4: ketoconazole, rifampicin, ethinyloestradiol/levonorgestrel (in an oral contraceptive), simvastatin, and nifedipine. In two open-label, two-period, randomized crossover studies, healthy subjects received repaglinide alone, repaglinide on day 5 of ketoconazole treatment, or repaglinide on day 7 of rifampicin treatment. In three open-label, three-period, randomized crossover studies, healthy subjects received 5 days of repaglinide alone; 5 days of ethinyloestradiol/levonorgestrel, simvastatin, or nifedipine alone; or 5 days of repaglinide concomitant with ethinyloestradiol/levonorgestrel, simvastatin, or nifedipine. Compared to administration of repaglinide alone, concomitant ketoconazole increased mean AUC0-infinity for repaglinide by 15% and mean Cmax by 7%. Concomitant rifampicin decreased mean AUC0-infinity for repaglinide by 31% and mean Cmax by 26%. Concomitant treatment with CYP3A4 substrates altered mean AUC0-5 h and mean Cmax for repaglinide by 1% and 17% (ethinyloestradiol/levonorgestrel), 2% and 27% (simvastatin), or 11% and 3% (nifedipine). Profiles of blood glucose concentration following repaglinide dosing were altered by less than 8% by both ketoconazole and rifampicin. In all five studies, most adverse events were related to hypoglycemia, as expected in a normal population given a blood glucose regulator. The safety profile of repaglinide was not altered by pretreatment with ketoconazole or rifampicin or by coadministration with ethinyloestradiol/levonorgestrel. The incidence of adverse events increased with coadministration of simvastatin or nifedipine compared to either repaglinide or simvastatin/nifedipine treatment alone. No clinically relevant pharmacokinetic interactions occurred between repaglinide and the CYP3A4 substrates ethinyloestradiol/levonorgestrel, simvastatin, or nifedipine. The pharmacokinetic profile of repaglinide was altered by administration of potent inhibitors or inducers, such as ketoconazole or rifampicin, but to a lesser degree than expected. These results are probably explained by the metabolic pathway of repaglinide that involves other enzymes than CYP3A4, reflected to some extent by a small change in repaglinide pharmacodynamics. Thus, careful monitoring of blood glucose in repaglinide-treated patients receiving strong inhibitors or inducers of CYP3A4 is recommended, and an increase in repaglinide dose may be necessary. No safety concerns were observed, except a higher incidence in adverse events in patients receiving repaglinide and simvastatin or nifedipine.


Subject(s)
Carbamates , Cytochrome P-450 Enzyme System/drug effects , Drug Interactions , Hypoglycemic Agents , Piperidines , Adult , Area Under Curve , Blood Glucose/drug effects , Carbamates/blood , Carbamates/pharmacokinetics , Carbamates/pharmacology , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/metabolism , Female , Half-Life , Humans , Hypoglycemic Agents/blood , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Ketoconazole/pharmacology , Male , Piperidines/blood , Piperidines/pharmacokinetics , Piperidines/pharmacology , Rifampin/pharmacology , Simvastatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...