Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38951031

ABSTRACT

In this review, we explore the complex interplay between the immune system and pancreatic ß cells in the context of type 1 diabetes (T1D). While T1D is predominantly considered a T-cell-mediated autoimmune disease, the inability of human leukocyte antigen (HLA)-risk alleles alone to explain disease development suggests a role for ß cells in initiating and/or propagating disease. This review delves into the vulnerability of ß cells, emphasizing their susceptibility to endoplasmic reticulum (ER) stress and protein modifications, which may give rise to neoantigens. Additionally, we discuss the role of viral infections as contributors to T1D onset, and of genetic factors with dual impacts on the immune system and ß cells. A greater understanding of the interplay between environmental triggers, autoimmunity, and the ß cell will not only lead to insight as to why the islet ß cells are specifically targeted by the immune system in T1D but may also reveal potential novel therapeutic interventions.

2.
Stem Cell Reports ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38942030

ABSTRACT

Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor ß1 (TGF-ß1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-ß1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-ß1-treated cells refractory to Wnt signaling. Subsequently, TGF-ß1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-ß1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic ß cell yield for cell-based therapeutic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...