Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e31958, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868046

ABSTRACT

Multi-drug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a global health threat. The severity of the problem lies in its impact on mortality, therapeutic limitations, the threat to public health, and the costs associated with managing infections caused by these resistant strains. Effectively addressing this challenge requires innovative approaches to research, the development of new antimicrobials, and more responsible antibiotic use practices globally. Antimicrobial peptides (AMPs) are a part of the innate immune system of all higher organisms. They are short, cationic and amphipathic molecules with broad-spectrum activity. AMPs interact with the negatively charged bacterial membrane. In recent years, AMPs have attracted considerable interest as potential antibiotics. However, AMPs have low bioavailability and short half-lives, which may be circumvented by chemical modification. This review presents recent in vitro and in silico strategies for the modification of AMPs to improve their stability and application in preclinical experiments.

2.
Mol Cell Biochem ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610616

ABSTRACT

The ever-increasing availability of genome sequencing data has revealed a substantial number of uncharacterized genes without known functions across various organisms. The first comprehensive genome sequencing of E. coli K12 revealed that more than 50% of its open reading frames corresponded to transcripts with no known functions. The group of protein-coding genes without a functional description and/or a recognized pathway, beginning with the letter "Y", is classified as the "y-ome". Several efforts have been made to elucidate the functions of these genes and to recognize their role in biological processes. This review provides a brief update on various strategies employed when studying the y-ome, such as high-throughput experimental approaches, comparative omics, metabolic engineering, gene expression analysis, and data integration techniques. Additionally, we highlight recent advancements in functional annotation methods, including the use of machine learning, network analysis, and functional genomics approaches. Novel approaches are required to produce more precise functional annotations across the genome to reduce the number of genes with unknown functions.

3.
Biochem Biophys Res Commun ; 661: 42-49, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37087797

ABSTRACT

Membrane transport proteins are essential for the transport of a wide variety of molecules across the cell membrane to maintain cellular homeostasis. Generally, these transport proteins can be overexpressed in a suitable host (bacteria, yeast, or mammalian cells), and it is well documented that overexpression of membrane proteins alters the global metabolomic and proteomic profiles of the host cells. In the present study, we investigated the physiological consequences of overexpression of a membrane transport protein YdgR that belongs to the POT/PTR family from E. coli by using the lab strain BL21 (DE3)pLysS in its functional and attenuated mutant YdgR-E33Q. We found significant differences between the omics (metabolomics and proteomics) profiles of the cells expressing functional YdgR as compared to cells expressing attenuated YdgR, e.g., upregulation of several uncharacterized y-proteins and enzymes involved in the metabolism of peptides and amino acids. Furthermore, molecular network analysis suggested a relatively higher presence of proline-containing tripeptides in cells expressing functional YdgR. We envisage that an in-depth investigation of physiological alterations due to protein over-expression may be used for the deorphanization of the y-gene transportome.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Proteomics , Membrane Transport Proteins/metabolism , Carrier Proteins/metabolism , Recombinant Proteins/metabolism , Mammals/metabolism
4.
Int J Mol Sci ; 23(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35743246

ABSTRACT

Myeloproliferative Neoplasms (MPNs) constitute a group of rare blood cancers that are characterized by mutations in bone marrow stem cells leading to the overproduction of erythrocytes, leukocytes, and thrombocytes. Mutations in calreticulin (CRT) genes may initiate MPNs, causing a novel variable polybasic stretch terminating in a common C-terminal sequence in the frameshifted CRT (CRTfs) proteins. Peptide antibodies to the mutated C-terminal are important reagents for research in the molecular mechanisms of MPNs and for the development of new diagnostic assays and therapies. In this study, eight peptide antibodies targeting the C-terminal of CRTfs were produced and characterised by modified enzyme-linked immunosorbent assays using resin-bound peptides. The antibodies reacted to two epitopes: CREACLQGWTE for SSI-HYB 385-01, 385-02, 385-03, 385-04, 385-07, 385-08, and 385-09 and CLQGWT for SSI-HYB 385-06. For the majority of antibodies, the residues Cys1, Trp9, and Glu11 were essential for reactivity. SSI-HYB 385-06, with the highest affinity, recognised recombinant CRTfs produced in yeast and the MARIMO cell line expressing CRTfs when examined in Western immunoblotting. Moreover, SSI-HYB 385-06 occasionally reacted to CRTfs from MPN patients when analysed by flow cytometry. The characterized antibodies may be used to understand the role of CRTfs in the pathogenesis of MPNs and to design and develop new diagnostic assays and therapeutic targets.


Subject(s)
Calreticulin , Myeloproliferative Disorders , Antibodies/metabolism , Calreticulin/genetics , Calreticulin/metabolism , Humans , Mutation , Myeloproliferative Disorders/genetics , Peptides/genetics , Peptides/metabolism
5.
Int J Mol Sci ; 23(8)2022 Apr 17.
Article in English | MEDLINE | ID: mdl-35457242

ABSTRACT

Two isoforms of the glutamate decarboxylase (GAD) enzyme exist, GAD65 and GAD67, which are associated with type 1 diabetes (T1D) and stiff-person syndrome (SPS), respectively. Interestingly, it has been reported that T1D patients seldom develop SPS, whereas patients with SPS occasionally develop T1D. In addition, coxsackievirus B4 (CVB4) has previously been proposed to be involved in the onset of T1D through molecular mimicry. On this basis, we aimed to examine antibody cross-reactivity between a specific region of GAD65 and GAD67, which has high sequence homology to the nonstructural P2C protein of CVB4 to determine potential correlations at antibody level. Monoclonal peptide antibodies generated in mice specific for a region with high similarity in all three proteins were screened for reactivity along with human sera in immunoassays. In total, six antibodies were generated. Two of the antibodies reacted to both GAD isoforms. However, none of the antibodies were cross-reactive to CVB, suggesting that antibody cross-reactivity between GAD65 and CVB, and GAD67 and CVB may not contribute to the onset of T1D and SPS, respectively.


Subject(s)
Diabetes Mellitus, Type 1 , Stiff-Person Syndrome , Animals , Antibodies, Monoclonal , Autoantibodies , Glutamate Decarboxylase/metabolism , Humans , Mice , Peptides , Protein Isoforms
6.
Antibodies (Basel) ; 11(1)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35323194

ABSTRACT

Rheumatoid arthritis (RA) is a chronic disease which causes joint inflammation and, ultimately, erosion of the underlying bone. Diagnosis of RA is based on the presence of biomarkers, such as anti-citrullinated protein antibodies (ACPA) and rheumatoid factors, along with clinical symptoms. Much evidence points to a link between the Epstein-Barr virus and RA. In this study, we analyzed ACPA reactivity to citrullinated peptides originating from Epstein-Barr nuclear antigens (EBNA1, EBNA2, and EBNA3) in order to elaborate the diagnostic potential of citrullinated EBNA peptides. Moreover, ACPA cross-reactivity to citrullinated peptides from myelin basic protein (MBP) was analyzed, as citrullinated MBP recently was described to be associated with multiple sclerosis, and some degree of sequence homology between MBP and citrullinated EBNA exists. A peptide from EBNA2, (EBNA2-A, GQGRGRWRG-Cit-GSKGRGRMH) reacted with approximately 70% of all RA sera, whereas only limited reactivity was detected to EBNA1 and EBNA3 peptides. Moreover, screening of ACPA reactivity to hybrid peptides of EBNA3-A (EPDSRDQQS-Cit-GQRRGDENRG) and EBNA2-A and peptides containing citrulline close to the N-terminal confirmed that ACPA sera contain different populations of ACPAs. No notable ACPA reactivity to MBP peptides was found, confirming that ACPAs are specific for RA, and that other factors than the presence of a central Cit-Gly motif are crucial for antibody binding. Collectively, these findings illustrate that citrullinated EBNA2 is an optimal candidate for ACPA detection, supporting current evidence that EBV is linked to RA onset.

7.
J Nat Prod ; 84(9): 2454-2467, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34460246

ABSTRACT

Thirteen previously undescribed chromene meroterpenoids, capitachromenic acids A-M (3-6, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b, and 11b), were identified from an ethyl acetate extract of Rhododendron capitatum, using dual high-resolution α-glucosidase and PTP1B inhibition profiling in combination with HPLC-PDA-HRMS-SPE-NMR. In addition, one known chromene meroterpenoid, daurichromenic acid (15), and its biosynthetic precursor, grifolic acid (12), two C-methylated flavanones, (2S)-5,7,4'-trihydroxy-8-methylflavanone (1) and farrerol (2), and two triterpenoids, oleanolic acid (14a) and ursolic acid (14b), were identified. New structures were elucidated by extensive 1D and 2D NMR analysis, and absolute configurations of new chromene meroterpenoids were assigned by analysis of their ECD spectra on the basis of the empirical chromane helicity rule and from Rh2(OCOCF3)4-induced ECD spectra by applying the bulkiness rule. Compounds 5, 9a, 9b, 12, and 15 showed α-glucosidase inhibitory activity with IC50 values ranging from 8.0 to 93.5 µM, while compounds 3, 5, 8b, 9a, 9b, 10b, 11b, 12, and 15 showed PTP1B inhibitory activity with IC50 values ranging from 2.5 to 68.1 µM.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Rhododendron/chemistry , Terpenes/pharmacology , China , Glycoside Hydrolase Inhibitors/isolation & purification , Hypoglycemic Agents/isolation & purification , Molecular Structure , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Terpenes/isolation & purification , alpha-Glucosidases
8.
Antibodies (Basel) ; 10(3)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34449533

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease affecting approximately 1-2% of the world population. In addition to the first discovered serologic markers for RA, the rheumatoid factors (RFs), anti-citrullinated protein antibodies (ACPAs) are even more specific for the disease compared to RFs and are found in 70-80% of RA patient sera. RA etiopathogenesis still needs to be elucidated, as different factors are proposed to be involved, such as Epstein-Barr virus infection. Hence, understanding the interaction between ACPAs and their citrullinated peptide targets is relevant for a better knowledge of RA pathophysiology and for diagnostic purposes. In this study, a cohort of RA sera, healthy control sera and multiple sclerosis sera were screened for reactivity to a variety of citrullinated peptides originating from α-enolase, pro-filaggrin, proteoglycan and Epstein-Barr nuclear antigen-2 by enzyme-linked immunosorbent assay. ACPA reactivity to citrullinated α-enolase peptides was found to depend on peptide length and peptide conformation, favouring cyclic (disulfide bond) conformations for long peptides and linear peptides for truncated ones. Additional investigations about the optimal peptide conformation for ACPA detection, employing pro-filaggrin and EBNA-2 peptides, confirmed these findings, indicating a positive effect of cyclization of longer peptides of approximately 20 amino acids. Moreover, screening of the citrullinated peptides confirmed that ACPAs can be divided into two groups based on their reactivity. Approximately 90% of RA sera recognize several peptide targets, being defined as cross-reactive or overlapping reactivities, and whose reactivity to the citrullinated peptide is considered primarily to be backbone-dependent. In contrast, approximately 10% recognize a single target and are defined as nonoverlapping, primarily depending on the specific amino acid side-chains in the epitope for a stable interaction. Collectively, this study contributed to characterize epitope composition and structure for optimal ACPA reactivity and to obtain further knowledge about the cross-reactive nature of ACPAs.

9.
Sci Rep ; 10(1): 14805, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908179

ABSTRACT

Antimicrobial peptides have attracted considerable interest as potential new class of antibiotics against multi-drug resistant bacteria. However, their therapeutic potential is limited, in part due to susceptibility towards enzymatic degradation and low bioavailability. Peptoids (oligomers of N-substituted glycines) demonstrate proteolytic stability and better bioavailability than corresponding peptides while in many cases retaining antibacterial activity. In this study, we synthesized a library of 36 peptoids containing fluorine, chlorine, bromine and iodine atoms, which vary by length and level of halogen substitution in position 4 of the phenyl rings. As we observed a clear correlation between halogenation of an inactive model peptoid and its increased antimicrobial activity, we designed chlorinated and brominated analogues of a known peptoid and its shorter counterpart. Short brominated analogues displayed up to 32-fold increase of the activity against S. aureus and 16- to 64-fold against E. coli and P. aeruginosa alongside reduced cytotoxicity. The biological effect of halogens seems to be linked to the relative hydrophobicity and self-assembly properties of the compounds. By small angle X-ray scattering (SAXS) we have demontrated how the self-assembled structures are dependent on the size of the halogen, degree of substitution and length of the peptoid, and correlated these features to their activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Peptoids/chemistry , Peptoids/pharmacology , Anti-Bacterial Agents/adverse effects , Cell Line , Cell Survival/drug effects , Escherichia coli/drug effects , Halogenation , Humans , Microbial Sensitivity Tests , Peptoids/adverse effects , Pseudomonas aeruginosa/drug effects , Scattering, Small Angle , Staphylococcus aureus/drug effects
10.
Front Chem ; 8: 370, 2020.
Article in English | MEDLINE | ID: mdl-32411678

ABSTRACT

Peptoids hold status as peptide-mimetics with versatile biological applications due to their proteolytic stability and structural diversity. Among those that have been studied in different biological systems, are peptoids with dominant balanced hydrophobic and charge distribution along the backbone. Tryptophan is an important amino acid found in many biologically active peptides. Tryptophan-like side chains in peptoids allow H-bonding, which is absent from the parent backbone, due to the unique indole ring. Furthermore, the rigid hydrophobic core and flat aromatic system influence the positioning in the hydrocarbon core and allows accommodating tryptophan-like side chains into the interfacial regions of bacterial membranes and causing bacterial membrane damage. Incorporating multiple tryptophan-like side chains in peptoids can be tricky and there is a lack of suitable, synthetic routes established. In this paper, we investigate the synthesis of peptoids rich in Nhtrp and Ntrp residues using different resins, cleavage conditions, and unprotected as well as tert-butyloxycarbonyl-protected amines suitable for automated solid-phase submonomer peptoid synthesis protocols.

11.
Molecules ; 25(7)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276427

ABSTRACT

Crude ethyl acetate extract of Gerbera piloselloides (L.) Cass. was investigated by dual high-resolution PTP1B/α-glucosidase inhibition profiling and LC-PDA-HRMS. This indicated the presence of a series of unprecedented prenyl- and geranyl-substituted coumarin derivatives correlated with both α-glucosidase and PTP1B inhibitory activity. Repeated chromatographic separation targeting these compounds led to the isolation of 13 new compounds, of which ten could be isolated as both enantiomers after chiral separation. The structures of all isolated compounds were characterized by HRMS and extensive 1D and 2D NMR analysis. The absolute configurations of the isolated compounds were determined by comparison of experimental and calculated electronic circular dichroism spectra. Compound 6 features a rare furan-oxepane 5/7 ring system, possibly formed through addition of a geranyl unit to C-3 of 5-methylcoumarin, representing a new type of geranyl-substituted coumarin skeleton. Compounds 19 and 24 are the first examples of dimeric natural products consisting of both coumarin and chromone moieties.


Subject(s)
Asteraceae/chemistry , Circular Dichroism , Coumarins/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Neoprene/chemistry , Biosynthetic Pathways , Carbon-13 Magnetic Resonance Spectroscopy , Coumarins/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Conformation , Neoprene/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Proton Magnetic Resonance Spectroscopy
12.
Int J Mol Sci ; 21(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079247

ABSTRACT

: Human α-calcitonin gene-related peptide (h-α-CGRP) is a highly potent vasodilator peptide that belongs to the family of calcitonin peptides. There are two forms of CGRP receptors in humans and rodents: α-CGRP receptor predominately found in the cardiovascular system and ß-CGRP receptor predominating in the gastrointestinal tract. The CGRP receptors are primarily localized to C and Aδ sensory fibers, where they are involved in nociceptive transmission and migraine pathophysiology. These fibers are found both peripherally and centrally, with extensive perivascular location. The CGRP receptors belong to the class B G-protein-coupled receptors, and they are primarily associated to signaling via Gα proteins. The objectives of the present work were: (i) synthesis of three single-labelled fluorescent analogues of h-α-CGRP by 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis, and (ii) testing of their biological activity in isolated human, mouse, and rat arteries by using a small-vessel myograph setup. The three analogues were labelled with 5(6)-carboxyfluorescein via the spacer 6-aminohexanoic acid at the chain of Lys24 or Lys35. Circular dichroism (CD) experiments were performed to obtain information on the secondary structure of these fluorescently labelled peptides. The CD spectra indicated that the folding of all three analogues was similar to that of native α-CGRP. The three fluorescent analogues of α-CGRP were successfully prepared with a purity of >95%. In comparison to α-CGRP, the three analogues exhibited similar efficacy, but different potency in producing a vasodilator effect. The analogue labelled at the N-terminus proved to be the most readily synthesized, but it was found to possess the lowest vasodilator potency. The analogues labelled at Lys35 or Lys24 exhibited an acceptable reduction in potency (i.e., 3-5 times and 5-10 times less potent, respectively), and thus they have potential for use in further investigations of receptor internalization and neuronal reuptake.


Subject(s)
Calcitonin Gene-Related Peptide/analogs & derivatives , Calcitonin Gene-Related Peptide/metabolism , Fluorescent Dyes , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology , Action Potentials , Aminocaproic Acid , Animals , Circular Dichroism , Fluoresceins , Humans , Male , Mice , Migraine Disorders , Protein Structure, Secondary , Rats , Rats, Sprague-Dawley , Receptors, Calcitonin Gene-Related Peptide/metabolism
13.
Biochim Biophys Acta Biomembr ; 1861(7): 1355-1364, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30978313

ABSTRACT

The naturally occurring peptide indolicidin from bovine neutrophils exhibits strong biological activity against a broad spectrum of microorganisms. This is believed to arise from selective interactions with the negatively charged cytoplasmic lipid membrane found in bacteria. We have investigated the peptide interaction with supported lipid model membranes using a combination of complementary surface sensitive techniques: neutron reflectometry (NR), atomic force microscopy (AFM), and quartz crystal microbalance with dissipation monitoring (QCM-D). The data are compared with small-angle X-ray scattering (SAXS) results obtained with lipid vesicle/peptide solutions. The peptide membrane interaction is shown to be significantly concentration dependent. At low concentrations, the peptide inserts at the outer leaflet in the interface between the headgroup and tail core. Insertion of the peptide results in a slight decrease in the lipid packing order of the bilayer, although not sufficient to cause membrane thinning. By increasing the indolicidin concentration well above the physiologically relevant conditions, a deeper penetration of the peptide into the bilayer and subsequent lipid removal take place, resulting in a slight membrane thinning. The results suggest that indolicidin induces lipid removal and that mixed indolicidin-lipid patches form on top of the supported lipid bilayers. Based on the work presented using model membranes, indolicidin seems to act through the interfacial activity model rather than through the formation of stable pores.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Lipids/chemistry , Membranes, Artificial , Biophysical Phenomena , Quartz Crystal Microbalance Techniques , X-Ray Diffraction
14.
Molecules ; 23(6)2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29882815

ABSTRACT

Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.


Subject(s)
Anti-Infective Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chorismic Acid/antagonists & inhibitors , Folic Acid/biosynthesis , Anti-Infective Agents/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Chorismic Acid/metabolism , Drug Discovery , Molecular Structure
15.
Eur J Pharm Biopharm ; 128: 1-9, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29605468

ABSTRACT

Infections caused by Pseudomonas aeruginosa are associated with high morbidity and mortality, especially in immunocompromised patients. These bacteria frequently grow within a biofilm matrix, rendering therapy with conventional antibiotics inefficient; a fact that emphasizes the need for new treatment strategies. Antimicrobial peptidomimetics constitute potential alternatives to traditional antimicrobial agents. However, their application remains limited due to the lack of efficient delivery to their target site in vivo and the risk of high systemic toxicity. Nanogels composed of cross-linked networks of amphiphilic polymers with a therapeutic drug molecule embedded constitute attractive drug delivery systems, as they have been shown to display unique properties such as biocompatibility and biodegrability, as well as confer improved drug stability and reduced drug-mediated cytotoxicity. Here, we report on the first formulation of biopolymer nanogels incorporating a potent antibacterial peptidomimetic. A lysine-based α-peptide/ß-peptoid hybrid with potent activity against P. aeruginosa was designed and formulated into a nanogel together with octenyl succinic anhydride-modified hyaluronic acid in order to improve its cell selectivity. Twelve nanogel formulations were prepared by using a design of experiments setup in order to identify the parameters yielding the highest drug loading and the smallest particle size. Encapsulation of the peptidomimetic into nanogels significantly decreased the cytotoxicity of the peptidomimetic to eukaryotes. The most promising formulation with high encapsulation efficiency (88%) of the peptidomimetic demonstrated a three-fold reduction in cytotoxicity towards hepatocytes along with improved bacterial killing kinetics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Carriers/chemistry , Peptidomimetics/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/therapeutic use , Biopolymers/chemistry , Drug Compounding/methods , Gels , Hepatocytes/drug effects , Humans , Hyaluronic Acid/chemistry , Lysine/pharmacology , Lysine/therapeutic use , Microbial Sensitivity Tests , Nanoparticles/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Peptidomimetics/therapeutic use , Peptoids/pharmacology , Peptoids/therapeutic use , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Succinic Anhydrides/chemistry , Toxicity Tests
16.
Sci Rep ; 8(1): 3562, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476092

ABSTRACT

Staphylococcus aureus is an important pathogen causing infections in humans and animals. Increasing problems with antimicrobial resistance has prompted the development of alternative treatment strategies, including antivirulence approaches targeting virulence regulation such as the agr quorum sensing system. agr is naturally induced by cyclic auto-inducing peptides (AIPs) binding to the AgrC receptor and cyclic peptide inhibitors have been identified competing with AIP binding to AgrC. Here, we disclose that small, linear peptidomimetics can act as specific and potent inhibitors of the S. aureus agr system via intercepting AIP-AgrC signal interaction at low micromolar concentrations. The corresponding linear peptide did not have this ability. This is the first report of a linear peptide-like molecule that interferes with agr activation by competitive binding to AgrC. Prospectively, these peptidomimetics may be valuable starting scaffolds for the development of new inhibitors of staphylococcal quorum sensing and virulence gene expression.


Subject(s)
Bacterial Proteins/genetics , Peptidomimetics/chemistry , Protein Kinases/genetics , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Animals , Bacterial Proteins/chemistry , Humans , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Peptides, Cyclic/pharmacology , Protein Binding , Protein Kinases/chemistry , Quorum Sensing/drug effects , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
17.
PLoS One ; 10(12): e0144707, 2015.
Article in English | MEDLINE | ID: mdl-26657009

ABSTRACT

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, affecting approximately 1-2% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs), which have been found in up to 70% of RA patients' sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target. As ACPAs have been suggested to be involved in the development of RA, knowledge about these antibodies may be crucial. In this study, we examined the influence of peptide backbone for ACPA reactivity in immunoassays. The antibodies were found to be reactive with a central Cit-Gly motif being essential for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone is essential for antibody reactivity. Based on these findings it was speculated that any amino acid sequence, which brings the peptide into a properly folded structure for antibody recognition is sufficient for antibody reactivity. These findings are in accordance with the current hypothesis that structural homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g., why some Cit-Gly-containing sequences are not targeted by ACPAs.


Subject(s)
Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , Citrulline/immunology , Peptides, Cyclic/immunology , Peptides/immunology , Amino Acid Sequence , Amino Acid Substitution , Arthritis, Rheumatoid/blood , Autoantibodies/blood , Cross Reactions/immunology , Epitopes/immunology , Fibrinogen/immunology , Glycine/genetics , Glycine/immunology , Humans , Immunoassay , Molecular Sequence Data , Peptides/genetics , Sequence Homology, Amino Acid
18.
J Labelled Comp Radiopharm ; 58(6): 227-33, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25906708

ABSTRACT

The human epidermal growth factor receptor-2 (HER2) is overexpressed in 20-30% of all breast cancer cases, leading to increased cell proliferation, growth and migration. The monoclonal antibody, trastuzumab, binds to HER2 and is used for treatment of HER2-positive breast cancer. Trastuzumab has previously been labelled with copper-64 by conjugation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. The aim of this study was to optimise the (64) Cu-labelling of DOTA-trastuzumab and as the first to produce and compare with its 1,4,7-triazacyclononane, 1-glutaric acid-5,7 acetic acid (NODAGA) analogue in a preliminary HER2 tumour mouse model. The chelators were conjugated to trastuzumab using the activated esters DOTA mono-N-hydroxysuccinimide (NHS) and NODAGA-NHS. (64) Cu-labelling of DOTA-trastuzumab was studied by varying the amount of DOTA-trastuzumab used, reaction temperature and time. Full (64) Cu incorporation could be achieved using a minimum of 10-µg DOTA-trastuzumab, but the fastest labelling was obtained after 15 min at room temperature using 25 µg of DOTA-trastuzumab. In comparison, 80% incorporation was achieved for (64) Cu-labelling of NODAGA-trastuzumab. Both [(64) Cu]DOTA-trastuzumab and [(64) Cu]NODAGA-trastuzumab were produced after purification with radiochemical purities of >97%. The tracers were injected into mice with HER2 expressing tumours. The mice were imaged by positron emission tomography and showed high tumour uptake of 3-9% ID/g for both tracers.


Subject(s)
Organometallic Compounds/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Acetates/chemistry , Animals , Antibodies, Monoclonal, Humanized/pharmacokinetics , Heterocyclic Compounds, 1-Ring/chemistry , Mice , Organometallic Compounds/pharmacokinetics , Protein Binding , Radiopharmaceuticals/pharmacokinetics , Receptor, ErbB-2/metabolism , Tissue Distribution , Trastuzumab
19.
ChemistryOpen ; 4(1): 65-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25861572

ABSTRACT

Aziridines can undergo a range of ring-opening reactions with nucleophiles. The regio- and stereochemistry of the products depend on the substituents on the aziridine. Aziridine ring-opening reactions have rarely been used in radiosynthesis. Herein we report the ring opening of activated aziridine-2-carboxylates with [(18)F]fluoride. The aziridine was activated for nucleophilic attack by substitution of various groups on the aziridine nitrogen atom. Fluorine-18 radiolabelling was followed by ester hydrolysis and removal of the activation group. Totally regioselective ring opening and subsequent deprotection was achieved with tert-butyloxycarbonyl- and carboxybenzyl-activated aziridines to give α-[(18)F]fluoro-ß-alanine in good radiochemical yield.

20.
APMIS ; 123(2): 136-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25470666

ABSTRACT

In this study, polyclonal and monoclonal antibodies to native and denatured chicken ovalbumin (OVA) were produced to compare their dependency on continuous and three-dimensional epitopes. These antibodies were characterized with respect to reactivity to native and denatured OVA by enzyme-linked immunosorbent assay (ELISA) employing surface-bound OVA and streptavidin-capture ELISA to determine whether effects of different coating influence antibody specificity and with respect to epitope specificity by peptide ELISA, using overlapping peptides, covering the complete OVA sequence. Polyclonal antibodies to native OVA reacted strongly with native and denatured OVA in both assays, but did not react with the overlapping peptides. Polyclonal antibodies to denatured OVA reacted strongly with both OVA forms and with several of the overlapping peptides. Monoclonal antibodies to native OVA reacted preferentially with three-dimensional epitopes on native OVA and not with denatured OVA. Monoclonal antibodies to denatured OVA showed reactivity to both OVA forms. Two of these monoclonal antibodies, HYB 94-06 and 94-07, showed reactivity to overlapping peptides and their epitopes were identified as flexible structures constituting amino acids 130-135 and 136-141, respectively. Moreover, comparison of antibody reactivity to N OVA revealed that in the streptavidin-capture ELISA, antibody reactivity was notably reduced compared to ELISA employing surface-bound OVA. Collectively, immunization with native OVA preferentially generates highly specific antibodies reacting with three-dimensional epitopes, whereas immunization with denatured OVA generates antibodies occasionally reacting with continuous epitopes. Moreover, as differences in monoclonal antibody reactivity was found between the two assays, monoclonal antibodies always should be selected by an assay mimicking the desired use of the final antibodies as closely as possible.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Ovalbumin/immunology , Amino Acid Sequence , Animals , Chickens , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/metabolism , Protein Denaturation , Streptavidin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...