Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Pleura Peritoneum ; 9(2): 47-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948327

ABSTRACT

Background: Malignant pleural effusion (MPE) is a common and debilitating condition seen in advanced cancer disease, and life-expectancy is short. Symptoms include pain and severe shortness of breath. Current first-line treatment options include pleural drainage using catheters as well as pleurodesis. However, these treatment modalities are often inefficient and patients need repeated procedures. Pressurized IntraThoracic Aerosol Chemotherapy (PITAC) is a minimally invasive procedure, where antineoplastic agents are nebulized under pressure into the pleural space. Content: We present the preliminary safety, feasibility, and response assessment data for PITAC based on a comprehensive literature review. Summary: Five retrospective studies reported data on 38 PITACs in 21 patients. Data were heterogeneous and incomplete on several important aspects such as procedure, safety, local effect and long-term outcomes. PITAC seems technically feasible with a low risk of complications and may provide some reduction in MPE in selected cases. Outlook: PITAC seems feasible, but prospective phase I and II studies are needed to define safety, indications, and efficacy.

2.
Article in English | MEDLINE | ID: mdl-38890783

ABSTRACT

BACKGROUND: Growth differentiation factor-15 (GDF-15) has been associated with senescence, lower muscle strength, and physical performance in healthy older people. Still, it is not clear whether GDF-15 can be utilized as a biomarker of sarcopenia and frailty in the early stages of hospitalization. We investigated the association of plasma GDF-15 with sarcopenia and frailty in older, acutely admitted medical patients. METHODS: The present study is based on secondary analyses of cross-sectional data from the Copenhagen PROTECT study, a prospective cohort study including 1071 patients ≥65 years of age admitted to the acute medical ward at Copenhagen University Hospital, Bispebjerg, Denmark. Muscle strength was assessed using handgrip strength, and lean mass was assessed using direct segmental multifrequency bioelectrical impedance analyses and used to clarify the potential presence of sarcopenia defined according to guidelines from the European Working Group on Sarcopenia in Older People. Frailty was evaluated using the Clinical Frailty Scale. Plasma GDF-15 was measured using electrochemiluminescence assays from Meso Scale Discovery (MSD, Rockville, MD, USA). RESULTS: We included 1036 patients with completed blood samples (mean age 78.9 ± 7.8 years, 53% female). The median concentration of GDF-15 was 2669.3 pg/mL. Systemic GDF-15 was significantly higher in patients with either sarcopenia (P < 0.01) or frailty (P < 0.001) compared with patients without the conditions. Optimum cut-off points of GDF-15 relating to sarcopenia and frailty were 1541 and 2166 pg/mL, respectively. CONCLUSIONS: Systemic GDF-15 was higher in acutely admitted older medical patients with sarcopenia and frailty compared with patients without. The present study defined the optimum cut-off for GDF-15, related to the presence of sarcopenia and frailty, respectively. When elevated above the derived cutoffs, GDF-15 was strongly associated with frailty and sarcopenia in both crude and fully adjusted models.

3.
Kidney Int Rep ; 9(6): 1876-1891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899206

ABSTRACT

Introduction: Inflammation is a significant contributor to cardiorenal morbidity and mortality in diabetic kidney disease (DKD). The pathophysiological mechanisms linking systemic, subacute inflammation and local, kidney injury-initiated immune maladaptation is partially understood. Methods: Here, we explored the expression of proinflammatory cytokines in patients with DKD; investigated mouse models of type 1 and type 2 diabetes (T2D); evaluated glomerular signaling in vitro; performed post hoc analyses of systemic and urinary markers of inflammation; and initiated a phase 2b clinical study (FRONTIER-1; NCT04170543). Results: Transcriptomic profiling of kidney biopsies from patients with DKD revealed significant glomerular upregulation of interleukin-33 (IL-33). Inhibition of IL-33 signaling reduced glomerular damage and albuminuria in the uninephrectomized db/db mouse model (T2D/DKD). On a cellular level, inhibiting IL-33 improved glomerular endothelial health by decreasing cellular inflammation and reducing release of proinflammatory cytokines. Therefore, FRONTIER-1 was designed to test the safety and efficacy of the IL-33-targeted monoclonal antibody tozorakimab in patients with DKD. So far, 578 patients are enrolled in FRONTIER-1. The baseline inflammation status of participants (N > 146) was assessed in blood and urine. Comparison to independent reference cohorts (N > 200) validated the distribution of urinary tumor necrosis factor receptor 1 (TNFR1) and C-C motif chemokine ligand 2 (CCL2). Treatment with dapagliflozin for 6 weeks did not alter these biomarkers significantly. Conclusion: We show that blocking the IL-33 pathway may mitigate glomerular endothelial inflammation in DKD. The findings from the FRONTIER-1 study will provide valuable insights into the therapeutic potential of IL-33 inhibition in DKD.

4.
Forensic Sci Int Synerg ; 8: 100478, 2024.
Article in English | MEDLINE | ID: mdl-38779309

ABSTRACT

Aim: Postmortem Computed Tomography (PMCT) is gradually introduced at forensic institutes. Image reconstruction software can increase diagnostic potential in CT by increasing distinction between structures and reduction of artifacts. The aim of this study was to develop and evaluate novel image reconstruction parameters for postmortem conditions, to increase image quality and diagnostic potential of CT scans. Method: Twenty PMCT scans of deceased hereof two in severe decay were subjected to four reconstruction techniques: a standard reconstruction algorithm, the detail reconstruction algorithm and two novel algorithms based on the standard algorithm, but with different Hounsfield settings. Image quality was evaluated by visual grading analysis (VGA) by four forensic radiologist observers. Results: The VGA did not prove that any of the reconstruction techniques were superior to the others. For standard and detail, the two pre-defined reconstruction algorithms, VGA scores were indiscernible and were superior to the equally indiscernible Hounsfield reconstructions on parameters translated into Sharpness and Low Contrast Resolution. The two alternative Hounsfield settings were superior with respect to Noise and Artifacts/Beam Hardening. Conclusion: The study elucidates the possiblity for multiple reconstructions specialized for PMCT conditions, to accommodate the special conditions when working with the deceased. Despite the lack of clear improvements in the tested reconstructions, this study provides an insight into some of the possibilities of improving PMCT quality using reconstruction techniques.

5.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673910

ABSTRACT

Endothelial cell (EC) injury is a crucial contributor to the progression of diabetic kidney disease (DKD), but the specific EC populations and mechanisms involved remain elusive. Kidney ECs (n = 5464) were collected at three timepoints from diabetic BTBRob/ob mice and non-diabetic littermates. Their heterogeneity, transcriptional changes, and alternative splicing during DKD progression were mapped using SmartSeq2 single-cell RNA sequencing (scRNAseq) and elucidated through pathway, network, and gene ontology enrichment analyses. We identified 13 distinct transcriptional EC phenotypes corresponding to different kidney vessel subtypes, confirmed through in situ hybridization and immunofluorescence. EC subtypes along nephrons displayed extensive zonation related to their functions. Differential gene expression analyses in peritubular and glomerular ECs in DKD underlined the regulation of DKD-relevant pathways including EIF2 signaling, oxidative phosphorylation, and IGF1 signaling. Importantly, this revealed the differential alteration of these pathways between the two EC subtypes and changes during disease progression. Furthermore, glomerular and peritubular ECs also displayed aberrant and dynamic alterations in alternative splicing (AS), which is strongly associated with DNA repair. Strikingly, genes displaying differential transcription or alternative splicing participate in divergent biological processes. Our study reveals the spatiotemporal regulation of gene transcription and AS linked to DKD progression, providing insight into pathomechanisms and clues to novel therapeutic targets for DKD treatment.


Subject(s)
Alternative Splicing , Diabetic Nephropathies , Endothelial Cells , Single-Cell Analysis , Transcriptome , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mice , Single-Cell Analysis/methods , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kidney/metabolism , Kidney/pathology , Gene Expression Regulation , Transcription, Genetic , Gene Expression Profiling/methods , Male
6.
Physiol Rep ; 12(7): e16010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38610066

ABSTRACT

Aldosterone has been suggested to be involved in the microvascular complications observed in type 2 diabetes. We aimed to investigate the effect of mineralocorticoid receptor (MR) blockade on endothelial function in individuals with type 2 diabetes compared to healthy controls. We included 12 participants with type 2 diabetes and 14 controls. We measured leg hemodynamics at baseline and during femoral arterial infusion of acetylcholine and sodium nitroprusside before and 8 weeks into treatment with MR blockade (eplerenone). Acetylcholine infusion was repeated with concomitant n-acetylcysteine (antioxidant) infusion. No difference in leg blood flow or vascular conductance was detected before or after the treatment with MR blockade in both groups and there was no difference between groups. Infusion of n-acetylcysteine increased baseline blood flow and vascular conductance, but did not change the vascular response to acetylcholine before or after treatment with MR blockade. Skeletal muscle eNOS content was unaltered by MR blockade and no difference between groups was detected. In conclusion, we found no effect of MR blockade endothelial function in individuals with and without type 2 diabetes. As the individuals with type 2 diabetes did not have vascular dysfunction, these results might not apply to individuals with vascular dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Receptors, Mineralocorticoid , Humans , Acetylcholine/administration & dosage , Acetylcholine/pharmacology , Acetylcholine/therapeutic use , Acetylcysteine , Aldosterone , Diabetes Mellitus, Type 2/drug therapy
7.
Hypertension ; 81(6): 1308-1319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563153

ABSTRACT

BACKGROUND: Abnormalities of resistance arteries may play essential roles in the pathophysiology of aging and hypertension. Deficiency of the vascular extracellular matrix protein MFAP4 (microfibrillar-associated protein 4) has previously been observed as protective against aberrant arterial remodeling. We hypothesized that MFAP4-deficiency would reduce age- and hypertension-dependent arterial changes in extracellular matrix composition and stiffening. METHODS: Mesenteric arteries were isolated from old (20-23 months) littermate Mfap4+/+ and Mfap4-/- mice, and 2-photon excitation microscopy imaging was used to quantify elastin and collagen volumes and dimensions in the vascular wall. Ten-week-old littermate Mfap4+/+ and Mfap4-/- mice were subjected to 20 days of continuous Ang II (angiotensin II) infusion and hypertension was monitored using invasive blood pressure measurements. Arterial stiffness, responses to vascular constrictors, and myogenic tone were monitored using wire- or pressure-myography. Collagen contents were assessed by Western blotting. RESULTS: MFAP4-deficiency significantly increased collagen volume and elastin fragmentation in aged mesenteric arteries without affecting arterial stiffness. MFAP4-deficient mice exhibited reduced diastolic pressure in Ang II-induced hypertension. There was no significant effect of MFAP4-deficiency on mesenteric artery structural remodeling or myogenic tone, although collagen content in mesenteric arteries was tendentially increased in hypertensive Mfap4+/+ mice relative to Mfap4-/- mice. Increased efficacy of vasoconstrictors (phenylephrine, thromboxane) and reduced stiffness were observed in Ang II-treated Mfap4-/- mouse mesenteric arteries in ex vivo myography recordings. CONCLUSIONS: MFAP4-deficiency reduces the elastin/collagen ratio in the aging resistance artery without affecting arterial stiffness. In contrast, MFAP4-deficiency reduces the stiffness of resistance arteries and ameliorates Ang II-induced hypertension.


Subject(s)
Aging , Angiotensin II , Hypertension , Mesenteric Arteries , Vascular Resistance , Vascular Stiffness , Animals , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/genetics , Mice , Mesenteric Arteries/physiopathology , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Vascular Stiffness/physiology , Vascular Stiffness/drug effects , Vascular Resistance/physiology , Aging/physiology , Angiotensin II/pharmacology , Elastin/metabolism , Blood Pressure/physiology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/deficiency , Mice, Knockout , Disease Models, Animal , Male , Collagen/metabolism
8.
J. optom. (Internet) ; 17(1)Jan.-March. 2024. graf
Article in English | IBECS | ID: ibc-229111

ABSTRACT

Purpose To investigate the effect of benzalkonium chloride (BAK)-preserved latanoprost and bimatoprost, polyquad (PQ)-preserved travoprost, and preservative-free (PF) latanoprost and tafluprost, all prostaglandin analogues (PGAs), on human conjunctival goblet cell (GC) survival. Furthermore, to investigate the effect of BAK-preserved and PF latanoprost on the cytokine secretion from GC. Methods Primary human conjunctival GCs were cultivated from donor tissue. Lactate dehydrogenase (LDH) and tetrazolium dye colorimetric (MTT) assays were used for the assessment of GC survival. A cytometric bead array was employed for measuring secretion of interleukin (IL)-6 and IL-8 from GC. Results BAK-preserved latanoprost and bimatoprost reduced cell survival by 28% (p = 0.0133) and 20% (p = 0.0208), respectively, in the LDH assay compared to a negative control. BAK-preserved latanoprost reduced cell proliferation by 54% (p = 0.003), BAK-preserved bimatoprost by 45% (p = 0.006), PQ-preserved travoprost by 16% (p = 0.0041), and PF latanoprost by 19% (p = 0.0001), in the MTT assay compared to a negative control. Only PF tafluprost did not affect the GCs in either assay. BAK-preserved latanoprost caused an increase in the secretion of pro-inflammatory IL-6 and IL-8 (p = 0.0001 and p = 0.0019, respectively) compared to a negative control, which PF latanoprost did not. Conclusion BAK-preserved PGA eye drops were more cytotoxic to GCs than PQ-preserved and PF PGA eye drops. BAK-preserved latanoprost induced an inflammatory response in GC. Treatment with PF and PQ-preserved PGA eye drops could mean better tolerability and adherence in glaucoma patients compared to treatment with BAK-preserved PGA eye drops. (AU)


Subject(s)
Ophthalmic Solutions/chemical synthesis , Ophthalmic Solutions/isolation & purification , Ophthalmic Solutions/therapeutic use , Prostaglandins, Synthetic , Benzalkonium Compounds , Goblet Cells
9.
Kidney Int ; 106(1): 85-97, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38431215

ABSTRACT

Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.


Subject(s)
Acute Kidney Injury , Phenotype , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Male , Middle Aged , Metabolomics/methods , Female , Kidney Transplantation/adverse effects , Adult , Image Cytometry/methods , Kidney/pathology , Kidney/metabolism , Phospholipases A2/metabolism , Arachidonic Acid/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Transcriptome , Dinoprostone/metabolism , Dinoprostone/analysis , Fibroblasts/metabolism , Gene Expression Profiling , Epithelial Cells/metabolism , Epithelial Cells/pathology , Biopsy , Multiomics
10.
Sci Rep ; 14(1): 5767, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459164

ABSTRACT

Genotype by environment interactions (G × E) are frequently observed in herbage production. Understanding the underlying biological mechanisms is important for achieving stable and predictive outputs across production environments. The microbiome is gaining increasing attention as a significant contributing factor to G × E. Here, we focused on the soil microbiome of perennial ryegrass (Lolium perenne L.) grown under field conditions and investigated the soil microbiome variation across different ryegrass varieties to assess whether environmental factors, such as seasonality and nitrogen levels, affect the microbial community. We identified bacteria, archaea, and fungi operational taxonomic units (OTUs) and showed that seasonality and ryegrass variety were the two factors explaining the largest fraction of the soil microbiome diversity. The strong and significant variety-by-treatment-by-seasonal cut interaction for ryegrass dry matter was associated with the number of unique OTUs within each sample. We identified seven OTUs associated with ryegrass dry matter variation. An OTU belonging to the Solirubrobacterales (Thermoleophilales) order was associated with increased plant biomass, supporting the possibility of developing engineered microbiomes for increased plant yield. Our results indicate the importance of incorporating different layers of biological data, such as genomic and soil microbiome data to improve the prediction accuracy of plant phenotypes grown across heterogeneous environments.


Subject(s)
Lolium , Soil , Lolium/genetics , Seasons , Nitrogen , Genotype
12.
Exp Physiol ; 109(5): 779-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38445814

ABSTRACT

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Endothelium, Vascular , Nifedipine , Nitrophenols , Humans , Male , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/drug effects , Aged , Calcium Channel Blockers/pharmacology , Nifedipine/pharmacology , Pilot Projects , Double-Blind Method , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Dihydropyridines/pharmacology , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Organophosphorus Compounds/pharmacology , Acetylcholine/pharmacology , Leg/blood supply , Nitroprusside/pharmacology , Middle Aged
13.
Pflugers Arch ; 476(3): 307-321, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279994

ABSTRACT

Aldosterone through the mineralocorticoid receptor MR has detrimental effects on cardiovascular disease. It reduces the bioavailability of nitric oxide and impairs endothelium-dependent vasodilatation. In resistance arteries, aldosterone impairs the sensitivity of vascular smooth muscle cells to nitric oxide by promoting the local secretion of histamine which activates H2 receptors. The present experiments tested in vivo and ex vivo the hypothesis that systemic H2-receptor antagonism reduces arterial blood pressure and improves vasodilatation in angiotensin II-induced chronic hypertension. Hypertension was induced by intravenous infusion of angiotensin II (60 ng kg-1 min-1) in conscious, unrestrained mice infused concomitantly with the H2-receptor antagonist ranitidine (27.8 µg kg-1 min-1) or vehicle for 24 days. Heart rate and arterial blood pressure were recorded by indwelling arterial catheter. Resistance (mesenteric) and conductance (aortae) arteries were harvested for perfusion myography and isometric tension recordings by wire myography, respectively. Plasma was analyzed for aldosterone concentration. ANGII infusion resulted in elevated arterial blood pressure and while in vivo treatment with ranitidine reduced plasma aldosterone concentration, it did not reduce blood pressure. Ranitidine improved ex vivo endothelial function (acetylcholine 10-9 to 10-6 mol L-1) in mesenteric resistance arteries. This was abolished by ex vivo treatment with aldosterone (10-9 mol L-1, 1 h). In aortic segments, in vivo ranitidine treatment impaired relaxation. Activation of histamine H2 receptors promotes aldosterone secretion, does not affect arterial blood pressure, and protects endothelial function in conduit arteries but promotes endothelial dysfunction in resistance arteries during angiotensin II-mediated hypertension. Aldosterone contributes little to angiotensin II-induced hypertension in mice.


Subject(s)
Aldosterone , Hypertension , Mice , Animals , Angiotensin II/pharmacology , Arterial Pressure , Histamine/pharmacology , Histamine H2 Antagonists/adverse effects , Ranitidine/adverse effects , Nitric Oxide , Blood Pressure , Endothelium, Vascular , Mesenteric Arteries
14.
J Optom ; 17(1): 100481, 2024.
Article in English | MEDLINE | ID: mdl-37788596

ABSTRACT

PURPOSE: To investigate the effect of benzalkonium chloride (BAK)-preserved latanoprost and bimatoprost, polyquad (PQ)-preserved travoprost, and preservative-free (PF) latanoprost and tafluprost, all prostaglandin analogues (PGAs), on human conjunctival goblet cell (GC) survival. Furthermore, to investigate the effect of BAK-preserved and PF latanoprost on the cytokine secretion from GC. METHODS: Primary human conjunctival GCs were cultivated from donor tissue. Lactate dehydrogenase (LDH) and tetrazolium dye colorimetric (MTT) assays were used for the assessment of GC survival. A cytometric bead array was employed for measuring secretion of interleukin (IL)-6 and IL-8 from GC. RESULTS: BAK-preserved latanoprost and bimatoprost reduced cell survival by 28% (p = 0.0133) and 20% (p = 0.0208), respectively, in the LDH assay compared to a negative control. BAK-preserved latanoprost reduced cell proliferation by 54% (p = 0.003), BAK-preserved bimatoprost by 45% (p = 0.006), PQ-preserved travoprost by 16% (p = 0.0041), and PF latanoprost by 19% (p = 0.0001), in the MTT assay compared to a negative control. Only PF tafluprost did not affect the GCs in either assay. BAK-preserved latanoprost caused an increase in the secretion of pro-inflammatory IL-6 and IL-8 (p = 0.0001 and p = 0.0019, respectively) compared to a negative control, which PF latanoprost did not. CONCLUSION: BAK-preserved PGA eye drops were more cytotoxic to GCs than PQ-preserved and PF PGA eye drops. BAK-preserved latanoprost induced an inflammatory response in GC. Treatment with PF and PQ-preserved PGA eye drops could mean better tolerability and adherence in glaucoma patients compared to treatment with BAK-preserved PGA eye drops.


Subject(s)
Benzalkonium Compounds , Prostaglandins F, Synthetic , Humans , Benzalkonium Compounds/pharmacology , Travoprost/pharmacology , Latanoprost/pharmacology , Ophthalmic Solutions/pharmacology , Goblet Cells , Bimatoprost/pharmacology , Cloprostenol/pharmacology , Interleukin-8 , Prostaglandins F, Synthetic/pharmacology , Antihypertensive Agents/adverse effects , Preservatives, Pharmaceutical/pharmacology , Prostaglandins, Synthetic/adverse effects
15.
Adv Sci (Weinh) ; 10(33): e2303131, 2023 11.
Article in English | MEDLINE | ID: mdl-37867234

ABSTRACT

The function of the glomerulus depends on the complex cell-cell/matrix interactions and replication of this in vitro would aid biological understanding in both health and disease. Previous models do not fully reflect all cell types and interactions present as they overlook mesangial cells within their 3D matrix. Herein, the development of a microphysiological system that contains all resident renal cell types in an anatomically relevant manner is presented. A detailed transcriptomic analysis of the contributing biology of each cell type, as well as functionally appropriate albumin retention in the system, is demonstrated. The important role of mesangial cells is shown in promoting the health and maturity of the other cell types. Additionally, a comparison of the incremental advances that each individual cell type brings to the phenotype of the others demonstrates that glomerular cells in simple 2D culture exhibit a state more reflective of the dysfunction observed in human disease than previously recognized. This in vitro model will expand the capability to investigate glomerular biology in a more translatable manner by the inclusion of the important mesangial cell compartment.


Subject(s)
Glomerular Mesangium , Microphysiological Systems , Humans , Glomerular Mesangium/metabolism , Kidney , Phenotype
16.
Biochem Pharmacol ; 216: 115793, 2023 10.
Article in English | MEDLINE | ID: mdl-37689272

ABSTRACT

With the discovery of the protective arm of the renin-angiotensin system (RAS), interest has grown in protective RAS-related receptors such as the angiotensin AT2-receptor [AT2R] as potential new drug targets. While it is known that AT2R couple to Gi, it is also apparent that they do not signal via inhibition of adenylyl cyclase/decrease in cAMP, as do many Gi-coupled receptors. Thus, standard commercially-available assays cannot be applied to test for agonistic or antagonistic properties of AT2R ligands. This lack of standard assays has hampered the development of new drugs targeting the AT2R. Therefore, we aimed at developing a reliable, technically easy assay for the determination of intrinsic activity of AT2R ligands, primarily for distinguishing between AT2R agonists and antagonists. We found that measurement of NO release by DAF-FM fluorescence in primary human aortic endothelial cells (HAEC) or in AT2R-transfected CHO cells is a reliable assay for the characterization of AT2R ligands. While testing the assay, we made several novel findings, including: a) C21 is a full agonist at the AT2R (with the same efficacy as angiotensin II); b) C21 has no intrinsic activity at the receptor Mas; c) AT2R-transfected HEK-293 cells are unresponsive to AT2R stimulation; d) EMA401 and PD123319, which are commonly regarded as AT2R antagonists, are partial agonists at the AT2R. Collectively, we have developed and tested an assay based on the measurement and quantification of NO release in HAEC or in AT2R-CHO cells that is suitable for the characterisation of novel and established AT2R ligands.


Subject(s)
Endothelial Cells , Receptor, Angiotensin, Type 2 , Animals , Cricetinae , Humans , Cricetulus , HEK293 Cells , Angiotensin II/pharmacology , Receptor, Angiotensin, Type 1
17.
J Am Med Dir Assoc ; 24(12): 1898-1903, 2023 12.
Article in English | MEDLINE | ID: mdl-37567243

ABSTRACT

OBJECTIVES: Older patients are typically underrepresented in clinical trials despite representing a major proportion of the patient population. We aim to describe the feasibility of performing body composition measures, physical function measures, and patient-reported questionnaires within the first 24 hours of admission in a large sample of older acutely admitted medical patients. In addition, we aim to characterize patients with missing measurements. DESIGN: Secondary analyses of cross-sectional data from a cohort study. SETTING AND PARTICIPANTS: A total of 1071 acutely admitted patients aged ≥65 years from the acute medical ward at Bispebjerg Hospital, were enrolled within the first 24 hours of hospitalization. METHODS: Body composition was investigated using direct segmental multifrequency bioelectrical impedance analyses (DSM-BIA) and physical function was assessed using hand grip strength (HGS) and the 30-second sit-to-stand test (STS). The orientation-memory-concentration test (OMC) was used to evaluate the prevalence of cognitive impairments within 24 hours of hospitalization, and the OMC in conjunction with the Strength, Assistance walking, Rise from a chair, Climb stairs, and Falls questionnaire (SARC-F) was used to assess the feasibility of patient-reported outcomes (PROs). RESULTS: Mean age was 78.8 ± 7.8 years (53.0% female). HGS was performed in 96.2% of the enrolled patients, whereas the PRO, 30-second STS, and DSM-BIA were performed in 91.2%, 69.2%, and 59.8% of patients, respectively. The main barrier for performing the 30-second STS and body composition measurements was an inability to mobilize the patient from the hospital bed. CONCLUSIONS AND IMPLICATIONS: The assessment of HGS and PROs show excellent feasibility in clinical research including older patients, even when the patients are enrolled and tested within 24 hours of an acute admission. Assessments of DSM-BIA and the 30-second STS show good feasibility but are less feasible in immobile patients often presenting as more frail, weaker, and cognitively impaired.


Subject(s)
Sarcopenia , Humans , Female , Aged , Aged, 80 and over , Male , Cohort Studies , Sarcopenia/epidemiology , Hand Strength , Cross-Sectional Studies , Feasibility Studies , Geriatric Assessment
18.
Front Psychol ; 14: 1175658, 2023.
Article in English | MEDLINE | ID: mdl-37560104

ABSTRACT

Parental report instruments are a non-invasive way to assess children's language development and have proved to give both valid and reliable results when used with children under the age of 2;6 (and in some cases up to 3). In this study we examine the newly developed Norwegian edition of a language assessment tool for older preschoolers: MacArthur-Bates Communicative Development Inventory III (CDI-III), investigating whether this parental report tool can be used for assessing the language of monolingual Norwegian-speaking children between 2;6 and 4 years. NCDI-III results for 100 children between 2;6 and 4.0 are presented. All sections were significantly intercorrelated. All sections except Pronunciation showed growth with age. Internal consistency was measured both in terms of Cronbach's alpha and corrected item-scale correlation, and the results are discussed considering features of item difficulty distribution. Methodological considerations are discussed, as well as implications relevant both for possible later revisions and for CDI-III adaptations to new languages.

19.
Acta Physiol (Oxf) ; 239(1): e14021, 2023 09.
Article in English | MEDLINE | ID: mdl-37555636

ABSTRACT

AIM: In extracerebral vascular beds cystathionine-gamma lyase (CSE) activity plays a vasodilatory role but the role of this hydrogen sulfide (H2 S) producing enzyme in the intracerebral arterioles remain poorly understood. We hypothesized a similar function in the intracerebral arterioles. METHODS: Intracerebral arterioles were isolated from wild type C57BL/6J mouse (9-12 months old) brains and from human brain biopsies. The function (contractility and secondary dilatation) of the intracerebral arterioles was tested ex vivo by pressure myography using a perfusion set-up. Reverse transcription polymerase chain reaction was used for detecting CSE expression. RESULTS: CSE is expressed in human and mouse intracerebral arterioles. CSE inhibition with L-propargylglycine (PAG) significantly dampened the K+ -induced vasoconstriction in intracerebral arterioles of both species (% of maximum contraction: in human control: 45.4 ± 2.7 versus PAG: 27 ± 5.2 and in mouse control: 50 ± 1.5 versus PAG: 33 ± 5.2) but did not affect the secondary dilatation. This effect of PAG was significantly reversed by the H2 S donor sodium hydrosulfide (NaSH) in human (PAG + NaSH: 38.8 ± 7.2) and mouse (PAG + NaSH: 41.7 ± 3.1) arterioles, respectively. The endothelial NO synthase (eNOS) inhibitor, Nω-Nitro-l-arginine methyl ester (L-NAME), and the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed the effect of PAG on the K+ -induced vasoconstriction in the mouse arterioles and attenuated the K+ -induced secondary dilatation significantly. CONCLUSION: CSE contributes to the K+ -induced vasoconstriction via a mechanism involving H2 S, eNOS, and sGC whereas the secondary dilatation is regulated by eNOS and sGC but not by CSE.


Subject(s)
Arterioles , Cystathionine gamma-Lyase , Enzyme Inhibitors , Vasoconstriction , Animals , Humans , Mice , Arterioles/drug effects , Arterioles/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Mice, Inbred C57BL
20.
Lab Chip ; 23(14): 3226-3237, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37341452

ABSTRACT

Modelling proximal tubule physiology and pharmacology is essential to understand tubular biology and guide drug discovery. To date, multiple models have been developed; however, their relevance to human disease has yet to be evaluated. Here, we report a 3D vascularized proximal tubule-on-a-multiplexed chip (3DvasPT-MC) device composed of co-localized cylindrical conduits lined with confluent epithelium and endothelium, embedded within a permeable matrix, and independently addressed by a closed-loop perfusion system. Each multiplexed chip contains six 3DvasPT models. We performed RNA-seq and compared the transcriptomic profile of proximal tubule epithelial cells (PTECs) and human glomerular endothelial cells (HGECs) seeded in our 3D vasPT-MCs and on 2D transwell controls with and without a gelatin-fibrin coating. Our results reveal that the transcriptional profile of PTECs is highly dependent on both the matrix and flow, while HGECs exhibit greater phenotypic plasticity and are affected by the matrix, PTECs, and flow. PTECs grown on non-coated Transwells display an enrichment of inflammatory markers, including TNF-a, IL-6, and CXCL6, resembling damaged tubules. However, this inflammatory response is not observed for 3D proximal tubules, which exhibit expression of kidney signature genes, including drug and solute transporters, akin to native tubular tissue. Likewise, the transcriptome of HGEC vessels resembled that of sc-RNAseq from glomerular endothelium when seeded on this matrix and subjected to flow. Our 3D vascularized tubule on chip model has utility for both renal physiology and pharmacology.


Subject(s)
Endothelial Cells , Kidney Tubules, Proximal , Humans , Kidney Tubules, Proximal/metabolism , Epithelium , Kidney , Epithelial Cells/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...