Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(30): eade0440, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37494430

ABSTRACT

Niche-conservative species are especially susceptible to changes in their environment, and detecting the negative effects of new stressors in their habitats is vital for safeguarding of these species. In the Arctic, human disturbance including marine traffic and exploration of resources is increasing rapidly due to climate change-induced reduction of sea ice. Here, we show that the narwhal, Monodon monoceros, is extremely sensitive to human-made noise. Narwhals avoided deep diving (> 350 m) with simultaneous reduction of foraging and increased shallow diving activity as a response to either ship sound alone or ship sound with concurrent seismic airgun pulses. Normal behavior decreased by 50 to 75% at distances where received sound levels were below background noise. Narwhals were equally responsive to both disturbance types, hence demonstrating their acute sensitivity to ship sound. This sensitivity coupled with their special behavioral-ecological strategy including a narrow ecological niche and high site fidelity makes them thus especially vulnerable to human impacts in the Arctic.


Subject(s)
Sound , Whales , Animals , Humans , Whales/physiology , Arctic Regions , Ecosystem , Ice Cover
2.
Biol Lett ; 17(11): 20210220, 2021 11.
Article in English | MEDLINE | ID: mdl-34753294

ABSTRACT

Anthropogenic activities are increasing in the Arctic, posing a threat to niche-conservative species with high seasonal site fidelity, such as the narwhal Monodon monoceros. In this controlled sound exposure study, six narwhals were live-captured and instrumented with animal-borne tags providing movement and behavioural data, and exposed to concurrent ship noise and airgun pulses. All narwhals reacted to sound exposure with reduced buzzing rates, where the response was dependent on the magnitude of exposure defined as 1/distance to ship. Buzzing rate was halved at 12 km from the ship, and whales ceased foraging at 7-8 km. Effects of exposure could be detected at distances > 40 km from the ship.At only a few kilometres from the ship, the received high-frequency cetacean weighted sound exposure levels were below background noise indicating extreme sensitivity of narwhals towards sound disturbance and demonstrating their ability to detect signals embedded in background noise. The narwhal's reactions to sustained disturbance may have a plethora of consequences both at individual and population levels. The observed reactions of the whales demonstrate their auditory sensitivity but also emphasize, that anthropogenic activities in pristine narwhal habitats needs to be managed carefully if healthy narwhal populations are to be maintained.


Subject(s)
Ships , Whales , Animals , Anthropogenic Effects , Arctic Regions , Noise/adverse effects
3.
Ecol Evol ; 10(15): 8073-8090, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32788962

ABSTRACT

The narwhal (Monodon monoceros) is a high-Arctic species inhabiting areas that are experiencing increases in sea temperatures, which together with reduction in sea ice are expected to modify the niches of several Arctic marine apex predators. The Scoresby Sound fjord complex in East Greenland is the summer residence for an isolated population of narwhals. The movements of 12 whales instrumented with Fastloc-GPS transmitters were studied during summer in Scoresby Sound and at their offshore winter ground in 2017-2019. An additional four narwhals provided detailed hydrographic profiles on both summer and winter grounds. Data on diving of the whales were obtained from 20 satellite-linked time-depth recorders and 16 Acousonde™ recorders that also provided information on the temperature and depth of buzzes. In summer, the foraging whales targeted depths between 300 and 850 m where the preferred areas visited by the whales had temperatures ranging between 0.6 and 1.5°C (mean = 1.1°C, SD = 0.22). The highest probability of buzzing activity during summer was at a temperature of 0.7°C and at depths > 300 m. The whales targeted similar depths at their offshore winter ground where the temperature was slightly higher (range: 0.7-1.7°C, mean = 1.3°C, SD = 0.29). Both the probability of buzzing events and the spatial distribution of the whales in both seasons demonstrated a preferential selection of cold water. This was particularly pronounced in winter where cold coastal water was selected and warm Atlantic water farther offshore was avoided. It is unknown if the small temperature niche of whales while feeding is because prey is concentrated at these temperature gradients and is easier to capture at low temperatures, or because there are limitations in the thermoregulation of the whales. In any case, the small niche requirements together with their strong site fidelity emphasize the sensitivity of narwhals to changes in the thermal characteristics of their habitats.

4.
Sci Rep ; 8(1): 9658, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29942009

ABSTRACT

The effects of climate change constitute a major concern in Arctic waters due to the rapid decline of sea ice, which may strongly alter the movements and habitat availability of Arctic marine mammals. We tracked 98 bowhead whales by satellite over an 11-year period (2001-2011) in Baffin Bay - West Greenland to investigate the environmental drivers (specifically sea surface temperature and sea ice) involved in bowhead whale's movements. Movement patterns differed according to season, with aggregations of whales found at higher latitudes during spring and summer likely in response to sea-ice retreat and increasing sea temperature (SST) facilitated by the warm West Greenland Current. In contrast, the whales moved further south in response to sea temperature decrease during autumn and winter. Statistical models indicated that the whales targeted a narrow range of SSTs from -0.5 to 2 °C. Sea surface temperatures are predicted to undergo a marked increase in the Arctic, which could expose bowhead whales to both thermal stress and altered stratification and vertical transport of water masses. With such profound changes, bowhead whales may face extensive habitat loss. Our results highlight the need for closer investigation and monitoring in order to predict the extent of future distribution changes.


Subject(s)
Animal Migration , Bowhead Whale , Oceans and Seas , Temperature , Animals , Arctic Regions , Climate Change , Ecosystem , Ice Cover , Models, Statistical , Seasons
5.
PLoS One ; 13(6): e0198295, 2018.
Article in English | MEDLINE | ID: mdl-29897955

ABSTRACT

Changes in climate are rapidly modifying the Arctic environment. As a result, human activities-and the sounds they produce-are predicted to increase in remote areas of Greenland, such as those inhabited by the narwhals (Monodon monoceros) of East Greenland. Meanwhile, nothing is known about these whales' acoustic behavior or their reactions to anthropogenic sounds. This lack of knowledge was addressed by instrumenting six narwhals in Scoresby Sound (Aug 2013-2016) with Acousonde™ acoustic tags and satellite tags. Continuous recordings over up to seven days were used to describe the acoustic behavior of the whales, in particular their use of three types of sounds serving two different purposes: echolocation clicks and buzzes, which serve feeding, and calls, presumably used for social communication. Logistic regression models were used to assess the effects of location in time and space on buzzing and calling rates. Buzzes were mostly produced at depths of 350-650 m and buzzing rates were higher in one particular fjord, likely a preferred feeding area. Calls generally occurred at shallower depths (<100 m), with more than half of these calls occurring near the surface (<7 m), where the whales also spent more than half of their time. A period of silence following release, present in all subjects, was attributed to the capture and tagging operations, emphasizing the importance of longer (multi-day) records. This study provides basic life-history information on a poorly known species-and therefore control data in ongoing or future sound-effect studies.


Subject(s)
Echolocation/physiology , Sound Spectrography/methods , Vocalization, Animal/physiology , Whales/physiology , Acoustics/instrumentation , Animals , Arctic Regions , Female , Greenland , Logistic Models , Male , Sound Spectrography/instrumentation , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...