Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 57(4): 2103-2110, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29389120

ABSTRACT

A high-entropy alloy (HEA) of HfNbTiVZr was synthesized using an arc furnace followed by ball milling. The hydrogen absorption mechanism was studied by in situ X-ray diffraction at different temperatures and by in situ and ex situ neutron diffraction experiments. The body centered cubic (BCC) metal phase undergoes a phase transformation to a body centered tetragonal (BCT) hydride phase with hydrogen occupying both tetrahedral and octahedral interstitial sites in the structure. Hydrogen cycling of the alloy at 500 °C is stable. The large lattice strain in the HEA seems favorable for absorption in both octahedral and tetrahedral sites. HEAs therefore have potential as hydrogen storage materials because of favorable absorption in all interstitial sites within the structure.

2.
Inorg Chem ; 56(3): 1072-1079, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28098993

ABSTRACT

Hydrides (deuterides) of the CrB-type Zintl phases AeTt (Ae = alkaline earth; Tt = tetrel) show interesting bonding properties with novel polyanions. In SrGeD4/3-x (γ phase), three zigzag chains of Ge atoms are condensed and terminated by covalently bound D atoms. A combination of in situ techniques (thermal analysis and synchrotron and neutron powder diffraction) revealed the existence of two further hydride (deuteride) phases with lower H (D) content (called α and ß phases). Both are structurally related to the parent Zintl phase SrGe and to the ZrNiH structure type containing variable amounts of H (D) in Sr4 tetrahedra. For α-SrGeDy, the highest D content y = 0.29 was found at 575(2) K under 5.0(1) MPa of D2 pressure, and ß-SrGeDy shows a homogeneity range of 0.47 < y < 0.63. Upon decomposition of SrGeD4/3-x (γ-SrGeDy), tetrahedral Sr4 voids stay filled, while the Ge-bound D4 site loses D. When reaching the lower D content limit, SrGeD4/3-x (γ phase) with 0.10 < x < 0.17, decomposes to the ß phase. All three hydrides (deuterides) of SrGe show variable H (D) content.

3.
Inorg Chem ; 56(3): 1061-1071, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28098994

ABSTRACT

Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3-x and BaSnD4/3-x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge-D) = 1.521(9) Å and d(Sn-D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2-x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si-D) = 1.641(5) Å.

SELECTION OF CITATIONS
SEARCH DETAIL
...