Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710839

ABSTRACT

Myocardial microvasculature and haemodynamics are indicative of potential microvascular diseases for patients with symptoms of coronary heart disease in the absence of obstructive coronary arteries. However, imaging microvascular structure and flow within the myocardium is challenging owing to the small size of the vessels and the constant movement of the patient's heart. Here we show the feasibility of transthoracic ultrasound localization microscopy for imaging myocardial microvasculature and haemodynamics in explanted pig hearts and in patients in vivo. Through a customized data-acquisition and processing pipeline with a cardiac phased-array probe, we leveraged motion correction and tracking to reconstruct the dynamics of microcirculation. For four patients, two of whom had impaired myocardial function, we obtained super-resolution images of myocardial vascular structure and flow using data acquired within a breath hold. Myocardial ultrasound localization microscopy may facilitate the understanding of myocardial microcirculation and the management of patients with cardiac microvascular diseases.

2.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702285

ABSTRACT

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Subject(s)
Imaging, Three-Dimensional , Ultrasonography , Rabbits , Animals , Humans , Ultrasonography/methods , Imaging, Three-Dimensional/methods , Equipment Design , Phantoms, Imaging , Skin/diagnostic imaging , Feasibility Studies
3.
IEEE Trans Biomed Eng ; 70(9): 2752-2761, 2023 09.
Article in English | MEDLINE | ID: mdl-37015124

ABSTRACT

OBJECTIVE: Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. METHOD: This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. RESULTS: Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe, suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. CONCLUSION: The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. SIGNIFICANCE: Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications.


Subject(s)
Image Processing, Computer-Assisted , Signal Processing, Computer-Assisted , Rabbits , Animals , Image Processing, Computer-Assisted/methods , Computer Simulation , Algorithms , Imaging, Three-Dimensional , Ultrasonography/methods , Phantoms, Imaging
4.
Article in English | MEDLINE | ID: mdl-34705641

ABSTRACT

Row-column arrays have been shown to be able to generate 3-D ultrafast ultrasound images with an order of magnitude less independent electronic channels than traditional 2-D matrix arrays. Unfortunately, row-column array images suffer from major imaging artifacts due to high sidelobes, particularly when operating at high frame rates. This article proposes a row-column-specific beamforming technique, for orthogonal plane-wave transmissions, row-column-specific frame multiply and sum (RC-FMAS), that exploits the incoherent nature of certain row-column array artifacts. A series of volumetric images is produced using row or column transmissions of 3-D plane waves. The voxelwise geometric mean of the beamformed volumetric images from each row and column pair is taken prior to compounding, which drastically reduces the incoherent imaging artifacts in the resulting image compared to traditional coherent compounding. The effectiveness of this technique was demonstrated in silico and in vitro, and the results show a significant reduction in sidelobe level with over 16-dB improvement in sidelobe to main-lobe energy ratio. Significantly improved contrast was demonstrated with contrast ratio increased by ~10 dB and generalized contrast-to-noise ratio increased by 158% when using the proposed new method compared to the existing delay and sum during in vitro studies. The new technique allowed for higher quality 3-D imaging while maintaining high frame rate potential.


Subject(s)
Artifacts , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Ultrasonography/methods
5.
Article in English | MEDLINE | ID: mdl-34133277

ABSTRACT

The coronary flow reserve (CFR), relating to the volumetric flow rate, is an effective functional parameter to assess the stenosis in the left anterior descending (LAD) coronary artery. We have recently proposed to use high-frame-rate (HFR) contrast-enhanced ultrasound (CEUS) to estimate the volumetric flow rate using ultrasound (US) speckle decorrelation (SDC) without any assumptions about the velocity profile. However, this method still has challenges in imaging deep and small vessels, such as LAD. In this study, we proposed to address the challenges and demonstrate the feasibility of volumetric flow rate measurement in a coronary mimicking phantom with pulsatile flow using a 1-D array cardiac probe, vector Doppler, and an optimal probe rotation/tilting for flow direction detection. Both simulations and in vitro experiments were conducted to validate the proposed method. It is shown that in-plane velocities estimated by vector Doppler under a 10° probe tilting resulted in smaller percentage error (+5.2%) in flow rate estimates than that in US imaging velocimetry (-20.2%) although their relative standard deviations were very close, being 2.6 and 2.8 ml/min, respectively. The flow rate estimated by SDC without direction detection had an error higher than 70%. A 10° tilting of the probe had the best results in flow rate estimation compared to the 5° or 15° tilting. Realistic global motions in the LAD increased the flow rate estimation error from 5.2% to 14.2%. It is concluded that it is feasible to measure the volumetric flow rate in a coronary artery flow phantom with a conventional cardiac probe, using HFR acquisition, Doppler, and SDC analysis. Potentially, this technique could also be applied to investigate the volumetric flow rate in other small vessels similar to the LAD.


Subject(s)
Coronary Vessels , Blood Flow Velocity , Coronary Vessels/diagnostic imaging , Phantoms, Imaging , Pulsatile Flow , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...