Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Org Chem ; 70(14): 5461-70, 2005 Jul 08.
Article in English | MEDLINE | ID: mdl-15989327

ABSTRACT

[reaction: see text] This study is a multinational, multidisciplinary contribution to the thermochemistry of dimethyl1,4-cubanedicarboxylate and the corresponding isomeric, cuneane derivative and provides both structural and thermochemical information regarding the rearrangement of dimethyl 1,4-cubanedicarboxylate to dimethyl 2,6-cuneanedicarboxylate. The enthalpies of formation in the condensed phase at T = 298.15 K of dimethyl 1,4-cubanedicarboxylate (dimethyl pentacyclo[4.2.0.0.(2,5)0.(3,8)0(4,7)]octane-1,4-dicarboxylate) and dimethyl 2,6-cuneanedicarboxylate (dimethyl pentacyclo[3.3.0.0.(2,4)0.(3,7)0(6,8)]octane-2,6-dicarboxylate) have been determined by combustion calorimetry, delta(f) H(o)m (cr)/kJ x mol(-1) = -232.62 +/- 5.84 and -413.02 +/- 5.16, respectively. The enthalpies of sublimation have been evaluated by combining vaporization enthalpies evaluated by correlation-gas chromatography and fusion enthalpies measured by differential scanning calorimetry and adjusted to T = 298.15 K, delta(cr) (g)Hm (298.15 K)/kJ x mol(-1) = 117.2 +/- 3.9 and 106.8 +/- 3.0, respectively. Combination of these two enthalpies resulted in delta(f) H(o)m (g., 298.15 K)/kJ x mol(-1) of -115.4 +/- 7.0 for dimethyl 1,4-cubanedicarboxylate and -306.2 +/- 6.0 for dimethyl 2,6-cuneanedicarboxylate. These measurements, accompanied by quantum chemical calculations, resulted in values of delta(f) Hm (g, 298.15 K) = 613.0 +/- 9.5 kJ x mol(-1) for cubane and 436.4 +/- 8.8 kJ x mol(-1) for cuneane. From these enthalpies of formation, strain enthalpies of 681.0 +/- 9.8 and 504.4 +/- 9.1 kJ x mol(-1) were calculated for cubane and cuneane by means of isodesmic reactions, respectively. Crystals of dimethyl 2,6-cuneanedicarboxylate are disordered; the substitution pattern and structure have been confirmed by determination of the X-ray crystal structure of the corresponding diacid.

SELECTION OF CITATIONS
SEARCH DETAIL