Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e18894, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662792

ABSTRACT

Despite their popularity, plant-based food gel systems (GS) sometimes have suboptimal texture compared to animal-based products. Therefore, 4 commercial plant proteins (from mung bean, pea, potato and soybean) and 2 commercial plant fats (sunflower oil and coconut fat) in 2 contents (7.5 wt% and 17.5 wt%) were evaluated towards their contribution to structure and physical stability a lean (LGS, no fat) and an emulsified GS (EGS). Generally, protein source had a larger effect on structure and physical stability than fat source and content. Unheated, GS with soybean protein showed most structure and highest physical stability. Heated till 94 °C, the structure of GS increased drastically, but EGS showed less structure than LGS, attributed to low solid fat contents (SFC), hence low rigidity, of the incorporated oil droplets at 94 °C. Cooled till 5 °C all GS showed an additional increase in structure, for GS with mung bean and pea protein accompanied with an increase in physical stability. Overall, EGS with sunflower oil showed less structure and lower stability than EGS with coconut fat, likely due to their different SFC. At 5 °C, Peak force of GS with potato protein was highest. Across protein sources, EGS displayed a higher Peak force with coconut fat than with sunflower oil, again likely due to different SFC, hence, rigidity of the oil droplets. Physical stability of GS did not vary significantly between protein sources, fat sources nor fat contents, after a freeze-thaw cycle, nor during prolonged cold storage.

2.
Foods ; 10(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34574187

ABSTRACT

The application potential of functional ingredients for the meat industry is often assessed through different measuring tools, thereby making comparisons difficult. The aim of this study was to create valuable information about the performance of functional ingredients based upon standardized and comparable data gathered through a newly developed screening tool. Therefore, 25 ingredients, selected from different techno-functional classes, were characterized at 2 different dosages by means of the screening methodology. The tool itself consisted of a lean meat model and fatty liver-based system, representative of the finely minced and/or emulsified charcuterie market. A total of 23 different parameters were measured through both model systems, providing information concerning water and fat binding capacity, emulsification, and texture and structure formation. Through cluster analysis, the ingredients were assigned to groups, each with their own specific properties. The screening tool provided good descriptive and distinctive power concerning ingredient functionalities and offers the industry a clear overview of their application characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...