Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9514, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664514

ABSTRACT

Recent research on the water content of large igneous provinces (LIPs) has revealed that water has a significant impact on the formation of LIPs. However, most studies focus on the water content of mafic-ultramafic rocks, while relatively little attention has been paid to the water content of continental flood basalts (CFB), which form the major part of LIPs and are characterized by huge volumes (> 1 × 105 km3) and short eruption times. Here, we determined water contents of clinopyroxene crystals from the Akesu diabase, which is co-genetic with flood basalts of the Tarim LIP in China. Based on these measurements, we obtained a water content of higher than 1.23 ± 0.49 wt.% for the parental magma to the Tarim CFB and a minimum water content of 1230 ± 490 ppm for the mantle source, thus indicating the presence of a hydrous mantle plume. Combined with previous studies, our results suggest that water plays a key role in the formation of the Tarim LIP. Additionally, the whole-rock compositions of the Akesu diabase indicate a contribution of pyroxenite in the mantle source. This is consistent with a model, in which water was brought into the Tarim mantle plume by a subducted oceanic plate that entered the deep mantle.

2.
Nat Commun ; 8(1): 1824, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29180738

ABSTRACT

The genesis of large igneous provinces (LIP) is controlled by multiple factors including anomalous mantle temperatures, the presence of fusible fertile components and volatiles in the mantle source, and the extent of decompression. The lack of a comprehensive examination of all these factors in one specific LIP makes the mantle plume model debatable. Here, we report estimates of the water content in picrites from the Emeishan LIP in southwestern China. Although these picrites display an island arc-like H2O content (up to 3.4 by weight percent), the trace element characteristics do not support a subduction zone setting but point to a hydrous reservoir in the deep mantle. Combining with previous studies, we propose that hydrous and hot plumes occasionally appeared in the Phanerozoic era to produce continental LIPs (e.g., Tarim, Siberian Trap, Karoo). The wide sampling of hydrous reservoirs in the deep mantle by mantle plumes thus indicates that the Earth's interior is largely hydrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...