Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5593, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696784

ABSTRACT

Fibrous networks constructed from high aspect ratio protein building blocks are ubiquitous in nature. Despite this ubiquity, the functional advantage of such building blocks over globular proteins is not understood. To answer this question, we engineered hydrogel network building blocks with varying numbers of protein L domains to control the aspect ratio. The mechanical and structural properties of photochemically crosslinked protein L networks were then characterised using shear rheology and small angle neutron scattering. We show that aspect ratio is a crucial property that defines network architecture and mechanics, by shifting the formation from translationally diffusion dominated to rotationally diffusion dominated. Additionally, we demonstrate that a similar transition is observed in the model living system: fibrin blood clot networks. The functional advantages of this transition are increased mechanical strength and the rapid assembly of homogenous networks above a critical protein concentration, crucial for in vivo biological processes such as blood clotting. In addition, manipulating aspect ratio also provides a parameter in the design of future bio-mimetic and bio-inspired materials.


Subject(s)
Biomimetic Materials , Blood Coagulation , Diffusion , Hydrogels , Models, Biological
2.
Biomacromolecules ; 22(10): 4191-4198, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34420304

ABSTRACT

Globular protein hydrogels are an emerging class of materials with the potential for rational design, and a generalized understanding of how their network properties emerge from the structure and dynamics of the building block is a key challenge. Here we computationally investigate the effect of intermediate (polymeric) nanoscale structure on the formation of protein hydrogels. We show that changes in both the cross-link topology and flexibility of the polymeric building block lead to changes in the force transmission around the system and provide insight into the dynamic network formation processes. The preassembled intermediate structure provides a novel structural coordinate for the hierarchical modulation of macroscopic network properties, as well as furthering our understanding of the general dynamics of network formation.


Subject(s)
Fractals , Hydrogels , Polymers , Proteins
3.
ACS Nano ; 15(7): 11296-11308, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34214394

ABSTRACT

Hierarchical assemblies of proteins exhibit a wide-range of material properties that are exploited both in nature and by artificially by humankind. However, little is understood about the importance of protein unfolding on the network assembly, severely limiting opportunities to utilize this nanoscale transition in the development of biomimetic and bioinspired materials. Here we control the force lability of a single protein building block, bovine serum albumin (BSA), and demonstrate that protein unfolding plays a critical role in defining the architecture and mechanics of a photochemically cross-linked native protein network. The internal nanoscale structure of BSA contains "molecular reinforcement" in the form of 17 covalent disulphide "nanostaples", preventing force-induced unfolding. Upon addition of reducing agents, these nanostaples are broken rendering the protein force labile. Employing a combination of circular dichroism (CD) spectroscopy, small-angle scattering (SAS), rheology, and modeling, we show that stapled protein forms reasonably homogeneous networks of cross-linked fractal-like clusters connected by an intercluster region of folded protein. Conversely, in situ protein unfolding results in more heterogeneous networks of denser fractal-like clusters connected by an intercluster region populated by unfolded protein. In addition, gelation-induced protein unfolding and cross-linking in the intercluster region changes the hydrogel mechanics, as measured by a 3-fold enhancement of the storage modulus, an increase in both the loss ratio and energy dissipation, and markedly different relaxation behavior. By controlling the protein's ability to unfold through nanoscale (un)stapling, we demonstrate the importance of in situ unfolding in defining both network architecture and mechanics, providing insight into fundamental hierarchical mechanics and a route to tune biomaterials for future applications.


Subject(s)
Hydrogels , Protein Unfolding , Hydrogels/chemistry , Biocompatible Materials/chemistry , Serum Albumin, Bovine/chemistry , Rheology
4.
Methods ; 185: 39-48, 2021 01.
Article in English | MEDLINE | ID: mdl-32007556

ABSTRACT

Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.


Subject(s)
Cytoplasmic Dyneins/metabolism , Finite Element Analysis , Molecular Dynamics Simulation , Algorithms , Cytoplasmic Dyneins/chemistry
5.
Q Rev Biophys ; 53: e9, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32772965

ABSTRACT

Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme. We subsequently assess the influence of crowding on the 3D exploration of microtubule-binding sites, and specifically on the axial step length. Our calculations combine experimental information on the shape, flexibility and environment of dynein-c from three distinct sources; negative stain electron microscopy, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). Our FFEA simulations show that the super-macromolecular organisation of multiple protein complexes into higher-order structures can have a significant influence on the effective flexibility of the individual molecular components, and may, therefore, play an important role in the physical mechanisms underlying their biological function.


Subject(s)
Axoneme/chemistry , Dyneins/chemistry , Flagella/metabolism , Macromolecular Substances/chemistry , Binding Sites , Cilia/metabolism , Computer Simulation , Cryoelectron Microscopy , Cytoskeleton/metabolism , Elastic Modulus , Finite Element Analysis , Hydrolysis , Kinetics , Microtubules/metabolism , Motion , Probability , Protein Binding , Protein Conformation , Thermodynamics
6.
Sci Rep ; 9(1): 18712, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822696

ABSTRACT

The E. coli membrane protein ZipA, binds to the tubulin homologue FtsZ, in the early stage of cell division. We isolated ZipA in a Styrene Maleic Acid lipid particle (SMALP) preserving its position and integrity with native E. coli membrane lipids. Direct binding of ZipA to FtsZ is demonstrated, including FtsZ fibre bundles decorated with ZipA. Using Cryo-Electron Microscopy, small-angle X-ray and neutron scattering, we determine the encapsulated-ZipA structure in isolation, and in complex with FtsZ to a resolution of 1.6 nm. Three regions can be identified from the structure which correspond to, SMALP encapsulated membrane and ZipA transmembrane helix, a separate short compact tether, and ZipA globular head which binds FtsZ. The complex extends 12 nm from the membrane in a compact structure, supported by mesoscale modelling techniques, measuring the movement and stiffness of the regions within ZipA provides molecular scale analysis and visualisation of the early divisome.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Division/physiology , Cytoskeletal Proteins/metabolism , Escherichia coli Proteins/metabolism , Bacterial Proteins/physiology , Carrier Proteins/physiology , Carrier Proteins/ultrastructure , Cell Cycle Proteins/physiology , Cell Cycle Proteins/ultrastructure , Cryoelectron Microscopy/methods , Cytoskeletal Proteins/physiology , Escherichia coli/metabolism , Escherichia coli Proteins/physiology , Escherichia coli Proteins/ultrastructure , Membrane Proteins/metabolism , Protein Binding
7.
Soft Matter ; 15(43): 8778-8789, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31595281

ABSTRACT

Biological organisms make use of hierarchically organised structures to modulate mechanical behaviour across multiple lengthscales, allowing microscopic objects to generate macroscopic effects. Within these structural hierarchies, the resultant physical behaviour of the entire system is determined not only by the intrinsic mechanical properties of constituent subunits, but also by their organisation in three-dimensional space. When these subunits are polyproteins, colloidal chains or other globular domain polymers, the Kratky-Porod model is often assumed for the individual subunits. Hence, it is implicitly asserted that the polymeric object has an intrinsic parameter, the persistence length, that defines its flexibility. However, the persistence lengths extracted from experiment vary, and are often relatively small. Through a series of simulations on polymer chains formed of globular subunits, we show that the persistence length itself is a hierarchical structural property, related not only to the intrinsic mechanical properties of the underlying monomeric subunits, but emerging due to the organisation of inhomogenous geometry along the polymer contour.

8.
PLoS Comput Biol ; 14(3): e1005897, 2018 03.
Article in English | MEDLINE | ID: mdl-29570700

ABSTRACT

Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 µm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.


Subject(s)
Computational Biology/methods , Finite Element Analysis , Proteins , Software , Molecular Dynamics Simulation , Protein Binding , Proteins/chemistry , Proteins/metabolism , Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...