Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 16(4): e0010323, 2022 04.
Article in English | MEDLINE | ID: mdl-35468132

ABSTRACT

Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4ß7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Antigens, Protozoan , Giardia , Giardiasis/parasitology , Humans , Immunoglobulin A , Immunoglobulin G , Membrane Proteins , Mice
2.
J Infect Dis ; 226(2): 319-323, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35262728

ABSTRACT

The protozoan pathogen Giardia lamblia is an important worldwide cause of diarrheal disease and malabsorption. Infection is managed with antimicrobials, although drug resistance and treatment failures are a clinical challenge. Prior infection provides significant protection, yet a human vaccine has not been realized. Individual antigens can elicit partial protection in experimental models, but protection is weaker than after prior infection. Here, we developed a multivalent nanovaccine by coating membranes derived from the parasite onto uniform and stable polymeric nanoparticles loaded with a mucosal adjuvant. Intranasal immunization with the nanovaccine induced adaptive immunity and effectively protected mice from G. lamblia infection.


Subject(s)
Giardia lamblia , Giardiasis , Nanoparticles , Parasites , Adjuvants, Immunologic , Animals , Giardiasis/parasitology , Giardiasis/prevention & control , Humans , Immunity, Mucosal , Mice
3.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34623320

ABSTRACT

Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.


Subject(s)
Intestinal Mucosa/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Tight Junctions/metabolism , Adolescent , Adult , Aged , Animals , Claudins/metabolism , Disease Models, Animal , Female , Genome-Wide Association Study , Humans , In Vitro Techniques , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Permeability , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Tight Junctions/pathology , Young Adult
4.
Infect Immun ; 87(6)2019 06.
Article in English | MEDLINE | ID: mdl-30962402

ABSTRACT

Giardia lamblia, one of the most common protozoal infections of the human intestine, is an important worldwide cause of diarrheal disease, malabsorption, malnutrition, delayed cognitive development in children, and protracted postinfectious syndromes. Despite its medical importance, no human vaccine is available against giardiasis. A crude veterinary vaccine has been developed, and experimental vaccines based on expression of multiple variant-specific surface proteins have been reported, but poorly defined vaccine components and excessive antigen variability are problematic for pharmaceutical vaccine production. To expand the repertoire of antigen candidates for vaccines, we reasoned that surface proteins may provide an enriched source of such antigens since key host effectors, such as secretory IgA, can directly bind to such antigens in the intestinal lumen and interfere with epithelial attachment. Here, we have applied a proteomics approach to identify 23 novel surface antigens of G. lamblia that show >90% amino acid sequence identity between the two human-pathogenic genetic assemblages (A and B) of the parasite. Surface localization of a representative subset of these proteins was confirmed by immunostaining. Four selected proteins, uridine phosphorylase-like protein-1, protein 21.1 (GL50803_27925), α1-giardin, and α11-giardin, were subsequently produced in recombinant form and shown to be immunogenic in mice and G. lamblia-infected humans and confer protection against G. lamblia infection upon intranasal immunization in rodent models of giardiasis. These results demonstrate that identification of conserved surface antigens provides a powerful approach for overcoming a key rate-limiting step in the design and construction of an effective vaccine against giardiasis.


Subject(s)
Antigens, Protozoan/immunology , Giardia lamblia/immunology , Giardiasis/parasitology , Proteome/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Cross Reactions , Female , Giardia lamblia/chemistry , Giardia lamblia/genetics , Giardiasis/immunology , Giardiasis/prevention & control , Humans , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Middle Aged , Proteome/chemistry , Proteome/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Vaccines/chemistry , Protozoan Vaccines/genetics , Young Adult
5.
J Immunol ; 201(2): 548-559, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29898958

ABSTRACT

The lumen-dwelling protozoan Giardia is an important parasitic cause of diarrheal disease worldwide. Infection can persist over extended periods with minimal intestinal inflammation, suggesting that Giardia may attenuate host responses to ensure its survival, although clearance eventually occurs in most cases. IL-10 is an anti-inflammatory regulator critical for intestinal homeostasis and controlling host responses to bacterial exposure, yet its potential role in coordinating antiprotozoal host defense in the intestine is not known. In this study, we found that murine infection with the natural enteric pathogen Giardia muris induced a transient IL-10 response after 2-4 wk at the primary site of infection in the upper small intestine, but parasite colonization and eradication were not affected by the absence of the cytokine in gene-targeted mice. However, IL-10 was critical for controlling infection-associated immunological sequelae in the colon because severe and persistent diarrhea and colitis were observed in IL-10-deficient mice within 1-2 wk postinfection but not in uninfected littermate controls. Inflammation was characterized by epithelial hyperplasia, neutrophil and macrophage expansion, and Th1 induction and could be prevented by blockade of IL-12/IL-23 p40 but not depletion of CD11c+ dendritic cells. Furthermore, the intestinal microbiota underwent characteristic shifts in composition and was required for disease because antibiotics and loss of TLR signaling in MyD88-deficient mice protected against colitis. Together, our data suggest that transient infection by a luminal and seemingly noninflammatory pathogen can trigger sustained colitis in genetically susceptible hosts, which has broader implications for understanding postinfectious syndromes and other chronic intestinal inflammatory conditions.


Subject(s)
Colitis/immunology , Giardia/physiology , Giardiasis/immunology , Interleukin-10/metabolism , Intestinal Mucosa/immunology , Intestine, Small/physiology , Th1 Cells/immunology , Animals , Cells, Cultured , Chronic Disease , Genetic Predisposition to Disease , Humans , Interleukin-10/genetics , Interleukin-12/metabolism , Intestinal Mucosa/parasitology , Intestine, Small/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptors/metabolism
6.
PLoS One ; 12(2): e0171239, 2017.
Article in English | MEDLINE | ID: mdl-28158225

ABSTRACT

BACKGROUND AND AIMS: The enteric nervous system (ENS) plays a crucial role in the control of gastrointestinal motility, secretion and absorption functions. Immunohistochemistry has been widely used to visualize neurons of the ENS for more than two decades. Genetically engineered mice that report specific proteins can also be used to visualize neurons of the ENS. The goal of our study was to develop a mouse that expresses fluorescent neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT), the two proteins expressed in 95% of the ENS neurons. We compared ENS neurons visualized in the reporter mouse with the wild type mouse stained using classical immunostaining techniques. METHODS: Mice hemizygous for ChAT-ChR2-YFP BAC transgene with expression of the mhChR2:YFP fusion protein directed by ChAT promoter/enhancer regions on the BAC transgene were purchased commercially. The Cre/LoxP technique of somatic recombination was used to construct mice with nNOS positive neurons. The two mice were crossbred and tissues were harvested and examined using fluorescent microscopy. Immunostaining was performed in the wild type mice, using antibodies to nNOS, ChAT, Hu and PGP 9.5. RESULTS: Greater than 95% of the ENS neurons were positive for either nNOS or ChAT or both. The nNOS and ChAT neurons and their processes in the ENS were well visualized in all the regions of the GI tract, i.e., esophagus, small intestine and colon. The number of nNOS and ChAT neurons was approximately same in the reporter mouse and immunostaining method in the wild type mouse. The nNOS fluorescence in the reporter mouse was seen in both cytoplasm as well as nucleus but in the immunostained specimens it was seen only in the cytoplasm. CONCLUSION: We propose that the genetically engineered double reporter mouse for ChAT and nNOS proteins is a powerful tool to study of the effects of various diseases on the ENS without the need for immunostaining.


Subject(s)
Enteric Nervous System/metabolism , Gene Expression , Genes, Reporter , Molecular Imaging , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Cholinergic Neurons/metabolism , Fluorescent Antibody Technique , Gastrointestinal Tract/metabolism , Immunohistochemistry , Mice , Mice, Transgenic , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Transport
7.
PLoS One ; 11(1): e0148216, 2016.
Article in English | MEDLINE | ID: mdl-26820624

ABSTRACT

BACKGROUND & AIMS: Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. METHODS: Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. RESULTS: Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. CONCLUSIONS: Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome.


Subject(s)
Intestinal Mucosa/cytology , Intestine, Small/cytology , Peyer's Patches/cytology , Stem Cells/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Humans , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestine, Small/immunology , Intestine, Small/microbiology , Peyer's Patches/immunology , Peyer's Patches/microbiology , RANK Ligand/immunology , Salmonella typhimurium/immunology , Stem Cells/immunology
8.
J Clin Invest ; 125(9): 3606-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26280574

ABSTRACT

Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I2 (PGI2) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.


Subject(s)
Colon , Intestinal Mucosa , Mesenchymal Stem Cell Transplantation , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Wound Healing , Wounds and Injuries , Allografts , Animals , Colon/injuries , Colon/metabolism , Colon/pathology , Epoprostenol/genetics , Epoprostenol/metabolism , Intestinal Mucosa/injuries , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Vascular Endothelial Growth Factor A/genetics , Wounds and Injuries/genetics , Wounds and Injuries/metabolism , Wounds and Injuries/pathology , Wounds and Injuries/therapy
9.
Exp Parasitol ; 156: 68-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26071205

ABSTRACT

Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including ß-defensin 1 and resistin-like molecule ß. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia.


Subject(s)
Antibodies, Protozoan/biosynthesis , Giardia/immunology , Giardiasis/immunology , Immunoglobulin A/biosynthesis , Interleukin-17/metabolism , Animals , Antibodies, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Chimera , Giardia lamblia/immunology , Hematopoietic Stem Cells/immunology , Immunoglobulin A/immunology , Interleukin-17/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestine, Small/immunology , Intestine, Small/parasitology , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Signal Transduction/immunology , Specific Pathogen-Free Organisms , Th17 Cells/immunology
10.
Am J Physiol Cell Physiol ; 307(2): C180-9, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24848114

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium are attaching-and-effacing (A/E) pathogens that cause intestinal inflammation and diarrhea. The bacteria adhere to the intestinal epithelium, destroy microvilli, and induce actin-filled membranous pedestals but do not invade the mucosa. Adherence leads to activation of several host cell kinases, including FYN, n-SRC, YES, ABL, and ARG, phosphorylation of the bacterial translocated intimin receptor, and actin polymerization and pedestal formation in cultured cells. However, marked functional redundancy appears to exist between kinases, and their physiological importance in A/E pathogen infections has remained unclear. To address this question, we employed a novel dynamic in vitro infection model that mimics transient and short-term interactions in the intestinal tract. Screening of a kinase inhibitor library and RNA interference experiments in vitro revealed that ABL and platelet-derived growth factor (PDGF) receptor (PDGFR) kinases, as well as p38 MAP kinase, have unique, indispensable roles in early attachment of EPEC to epithelial cells under dynamic infection conditions. Studies with mutant EPEC showed that the attachment functions of ABL and PDGFR were independent of the intimin receptor but required bacterial bundle-forming pili. Furthermore, inhibition of ABL and PDGFR with imatinib protected against infection of mice with modest loads of C. rodentium, whereas the kinases were dispensable for high inocula or late after infection. These results indicate that ABL and PDGFR have indispensable roles in early A/E pathogen attachment to intestinal epithelial cells and for in vivo infection with limiting inocula but are not required for late intimate bacterial attachment or high inoculum infections.


Subject(s)
Bacterial Adhesion/physiology , Enteropathogenic Escherichia coli/metabolism , Epithelial Cells/physiology , Oncogene Proteins v-abl/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Animals , Cell Line , Enteropathogenic Escherichia coli/cytology , Enteropathogenic Escherichia coli/physiology , Escherichia coli Infections/microbiology , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Oncogene Proteins v-abl/genetics , Protein Kinase Inhibitors/pharmacology , Receptors, Platelet-Derived Growth Factor/genetics
11.
Infect Immun ; 82(5): 1949-58, 2014 May.
Article in English | MEDLINE | ID: mdl-24566625

ABSTRACT

Interleukin-10 (IL-10) curtails immune responses to microbial infection and autoantigens and contributes to intestinal immune homeostasis, yet administration of IL-10 has not been effective at attenuating chronic intestinal inflammatory conditions, suggesting that its immune functions may be context dependent. To gain a broader understanding of the importance of IL-10 in controlling mucosal immune responses to infectious challenges, we employed the murine attaching and effacing pathogen Citrobacter rodentium, which colonizes primarily the surfaces of the cecum and colon and causes transient mucosal inflammation driven by Th17 and Th1 T helper cells. Infection induced macrophage and dendritic cell production of IL-10, which diminished antibacterial host defenses, because IL-10-deficient mice cleared infection faster than wild-type controls. In parallel, the mice had less acute infection-associated colitis and resolved it more rapidly than controls. Importantly, transient C. rodentium infection protected IL-10-deficient mice against the later development of spontaneous colitis that normally occurs with aging in these mice. Genome-wide expression studies revealed that IL-10 deficiency was associated with downregulation of proinflammatory pathways but increased expression of the anti-inflammatory cytokine IL-27 in response to infection. IL-27 was found to suppress in vitro Th17 and, to a lesser degree, Th1 differentiation independent of IL-10. Furthermore, neutralization of IL-27 resulted in more severe colitis in infected IL-10-deficient mice. Together, these findings indicate that IL-10 is dispensable for resolving C. rodentium-associated colitis and further suggest that IL-27 may be a critical factor for controlling intestinal inflammation and Th17 and Th1 development by IL-10-independent mechanisms.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections/microbiology , Inflammation/microbiology , Interleukin-10/metabolism , Aging , Animals , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/pathology , Female , Gene Expression Regulation/immunology , Interleukin-10/genetics , Interleukins/genetics , Interleukins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...