Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 85(4): 390-403, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37910193

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) was exposed through the diet to a mixture of non-ionic organic chemicals for 28 d, followed by a depuration phase, in accordance with OECD method 305. The mixture included hexachlorobenzene (HCB), 2,2',5,5'-tetrachlorobiphenyl (PCB-52), 2,2',5,5'-hexachlorobiphenyl (PCB-153), decachlorobiphenyl (PCB-209), decabromodiphenyl ether (BDE209), decabromodiphenyl ethane (DBDPE), bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), perchloro-p-terphenyl (p-TCP), perchloro-m-terphenyl (m-TCP), and perchloro-p-quaterphenyl (p-QTCP), the latter six of which are considered highly hydrophobic based on n-octanol/water partition coefficients (KOW) greater than 108. All chemicals had first-order uptake and elimination kinetics except p-QTCP, whose kinetics could not be verified due to limitations of analytical detection in the elimination phase. For HCB and PCBs, the growth-corrected elimination rates (k2g), assimilation efficiencies (α), and biomagnification factors (BMFL) corrected for lipid content compared well with literature values. For the highly hydrophobic chemicals, elimination rates were faster than the rates for HCB and PCBs, and α's and BMFLs were much lower than those of HCB and PCBs, i.e., ranging from 0.019 to 2.8%, and from 0.000051 to 0.023 (g-lipid/g-lipid), respectively. As a result, the highly hydrophobic organic chemicals were found be much less bioavailable and bioaccumulative than HCB and PCBs. Based on the current laboratory dietary exposures, none of the highly hydrophobic substances would be expected to biomagnify, but Trophic Magnification Factors (TMFs) > 1 have been reported from field studies for TBPH and DBDPE. Additional research is needed to understand and reconcile the apparent inconsistencies in these two lines of evidence for bioaccumulation assessment.


Subject(s)
Oncorhynchus mykiss , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Hexachlorobenzene , Organic Chemicals/chemistry , Diet , Water Pollutants, Chemical/analysis , Lipids
2.
Chemosphere ; 218: 616-623, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30502700

ABSTRACT

Direct measurement of the n-octanol partition coefficients (KOW) for highly hydrophobic organic chemicals is extremely difficult because of the extremely low concentrations present in the water phase. n-Butanol/water partition coefficients (KBW) are generally much lower than KOW due to the increased solubility of solute in the alcohol saturated aqueous phase, and therefore become easier to measure. We measured the KBW for 25 neutral organic chemicals having measured log KOWs ranging from 2 to 9 and 4 additional highly hydrophobic chemicals, with unmeasured KOWs, having estimated log KOWs ranging from 6 to 18. The measured log KBW and log KOW values were linearly related, r2 = 0.978, and using the regression developed from the data, KOWs were predicted for the 4 highly hydrophobic chemicals with unmeasured KOWs. The resulting predictions were orders of magnitude lower than those predicted by a variety of computational models and suggests the estimates of KOW in the literature for highly hydrophobic chemicals (i.e., log KOW greater than 10) are likely incorrect by several orders of magnitude.


Subject(s)
1-Butanol/chemistry , 1-Octanol/chemistry , Organic Chemicals/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...