Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(4)2018 01.
Article in English | MEDLINE | ID: mdl-29205813

ABSTRACT

Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm-1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition.


Subject(s)
DNA/chemistry , Sequence Analysis, DNA/methods , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
2.
ACS Appl Mater Interfaces ; 7(2): 1240-9, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25564878

ABSTRACT

Polyimide aerogels combine high porosity, low thermal conductivity, flexibility, and low density with excellent mechanical properties. However, previously used cross-linkers, such as 1,3,5-triaminophenoxybenzene (TAB), 2,4,6-tris(4-aminophenyl)pyridine (TAPP), or octa(aminophenoxy)silsesquioxane (OAPS), either are not commercially available or are prohibitively expensive. Finding more cost efficient cross-linkers that are commercially available to synthesize these aerogels is crucial for making large scale manufacturing attractive. Herein, we describe an approach to making polyimide aerogels starting with amine capped oligomers that are cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC). BTC is a lower cost, commercially available alternative to TAB, TAPP, or OAPS. Aerogels made in this way have the same or higher modulus and higher surface area compared to those previously reported with either TAB or OAPS cross-links at the same density. While the cross-link structure is an amide, the thermal stability is not compromised most likely because the cross-link is only a small part of the composition of the aerogel. Onset of decomposition depends primarily on the backbone chemistry with 4,4'-oxidianiline (ODA) being more thermally stable than 2,2'-dimethylbenzidine (DMBZ), similar to those previously reported with other cross-links.

SELECTION OF CITATIONS
SEARCH DETAIL
...