Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 9(394)2017 06 14.
Article in English | MEDLINE | ID: mdl-28615361

ABSTRACT

Activating mutations in KRAS underlie the pathogenesis of up to 20% of human tumors, and KRAS is one of the most frequently mutated genes in cancer. Developing therapeutics to block KRAS activity has proven difficult, and no direct inhibitor of KRAS function has entered clinical trials. We describe the preclinical evaluation of AZD4785, a high-affinity constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) targeting KRAS mRNA. AZD4785 potently and selectively depleted cellular KRAS mRNA and protein, resulting in inhibition of downstream effector pathways and antiproliferative effects selectively in KRAS mutant cells. AZD4785-mediated depletion of KRAS was not associated with feedback activation of the mitogen-activated protein kinase (MAPK) pathway, which is seen with RAS-MAPK pathway inhibitors. Systemic delivery of AZD4785 to mice bearing KRAS mutant non-small cell lung cancer cell line xenografts or patient-derived xenografts resulted in inhibition of KRAS expression in tumors and antitumor activity. The safety of this approach was demonstrated in mice and monkeys with KRAS ASOs that produced robust target knockdown in a broad set of tissues without any adverse effects. Together, these data suggest that AZD4785 is an attractive therapeutic for the treatment of KRAS-driven human cancers and warrants further development.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , ras Proteins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Models, Animal , Humans , Mice , Mutation/genetics , Oligonucleotides, Antisense/therapeutic use , Signal Transduction/drug effects , Signal Transduction/genetics , Xenograft Model Antitumor Assays , ras Proteins/antagonists & inhibitors
2.
Bioorg Med Chem Lett ; 27(13): 3030-3035, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28526367

ABSTRACT

We report the discovery of a novel aminopyrazine series of PI3Kα inhibitors, designed by hybridizing two known scaffolds of PI3K inhibitors. We describe the progress achieved from the first compounds plagued with poor general kinase selectivity to compounds showing high selectivity for PI3Kα over PI3Kß and excellent general kinase selectivity. This effort culminated with the identification of compound 5 displaying high potency and selectivity, and suitable physiochemical and pharmacokinetic properties for oral administration. In vivo, compound 5 showed good inhibition of tumour growth (86% tumour growth inhibition at 50mg/kg twice daily orally) in the MCF7 xenograft model in mice.


Subject(s)
Drug Discovery , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Class I Phosphatidylinositol 3-Kinases , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...