Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Nutr ; 115(6): 1626-1636, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35179193

ABSTRACT

BACKGROUND: Epidemiologic observations suggest increased potato consumption correlates with weight gain, adiposity, and diabetes risk, whereas nut consumption is associated with weight control and metabolic health. Randomized controlled trial (RCT) data indicate humans respond to changes in energy intake in single dietary components and compensate for extra energy consumed. OBJECTIVES: We completed an RCT testing whether increased daily potato consumption influences energy balance [specifically, fat mass (FM)] compared with calorie-matched almond consumption. METHODS: A 30-d RCT of 180 adults prescribed calorie-matched (300 kcal/d, n = 60 participants/group) than consumed 1 of the following: 1) almonds (almond group), 2) French fries (potato group), or 3) French fries with herb/spices mix (potato + herb/spices group). Baseline and 30-d FM were measured by DXA (primary outcome), with secondary outcomes including body weight and carbohydrate metabolism markers [glycated hemoglobin (HbA1c), fasting blood glucose and insulin, HOMA-IR)]. A subset of 5 participants/group participated in a postprandial meal-based tolerance test. RESULTS: A total of 180 participants were randomly assigned [gender: 67.8% female; mean ± SD age: 30.4 ± 8.7 y; BMI (in kg/m2): 26.1 ± 4.2; and weight: 75.6 ± 15.4 kg], with 12 dropouts and 3 terminations. No significantly different FM changes were observed between almond and potato consumption [combined ± herb/spices; mean ± SE almond: 230.87 ± 114.01 g; potato: 123.73 ± 86.09 g; P = 0.443], fasting glucose (P = 0.985), insulin (P = 0.082), HOMA-IR (P = 0.080), or HbA1c (P = 0.269). Body weight change was not significantly different in the potato groups combined compared with the almond group (P = 0.116), but was significantly different among the 3 groups (P = 0.014; almond: 0.49 ± 0.20 kg; potato: -0.24 ± 0.20 kg; potato + herb/spices: 0.47 ± 0.21 kg). In meal tests, significantly lower post-prandial glucose and insulin responses to almonds compared with potatoes were observed (P = 0.046, P = 0.006, respectively), with potato + herb/spices having intermediate effects. CONCLUSION: There were no significant differences in FM or in glucoregulatory biomarkers after 30 d of potato consumption compared with almonds. Results do not support a causal relation between increased French fried potato consumption and the negative health outcomes studied. This trial was registered at clinicaltrials.gov as NCT03518515.


Subject(s)
Prunus dulcis , Solanum tuberosum , Adult , Biomarkers , Blood Glucose/metabolism , Female , Glucose , Glycated Hemoglobin , Humans , Insulin , Male , Obesity , Prunus dulcis/metabolism , Young Adult
2.
Mol Cancer Ther ; 7(6): 1569-78, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18566227

ABSTRACT

Selective targeting of up-regulated integrins on tumor cells is a novel antiangiogenesis strategy for treating solid tumors. CNTO 95 is a fully human anti-alpha(v) integrin monoclonal antibody and has shown antitumor activity when used as a single agent in preclinical studies. We previously showed that radiation combined with an integrin alpha(v)beta(3) antagonist cRGD peptide increased the therapeutic efficacy of radiation in preclinical tumor models. We hypothesized that the combination of radiation and CNTO 95 would synergistically enhance the efficacy of radiation therapy. The in vitro studies showed that CNTO 95 radiosensitized and induced apoptosis in M21 cells in vitronectin-coated dishes. In mice bearing established human cancer xenograft tumors, CNTO 95 alone had only a moderate effect on tumor growth. The combined therapy of CNTO 95 and fractionated radiation significantly inhibited tumor growth and produced the longer tumor growth delay time in multiple tumor models. Maintenance dosing of CNTO 95 following irradiation contributed to efficacy and was important for continued inhibition of tumor regrowth. Immunohistochemistry studies showed that the combined use of CNTO 95 and radiation reduced the alpha(v) integrin and vascular endothelial growth factor receptor expression and the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. CNTO 95 alone and in combination with radiation did not produce any obvious signs of systemic toxicity. These results show that CNTO 95 can potentiate the efficacy of fractionated radiation therapy in a variety of human cancer xenograft tumor types in nude mice. These findings are very promising and may have high translational relevance for the treatment of patients with solid tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Dose Fractionation, Radiation , Integrins/immunology , Radioimmunotherapy , Animals , Antibodies, Monoclonal, Humanized , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival , Combined Modality Therapy , Flow Cytometry , Humans , Immunohistochemistry , Male , Mice , Mice, Nude , Neovascularization, Pathologic , Time Factors
3.
Endocrinology ; 143(10): 3866-74, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12239098

ABSTRACT

Using microarray technology, we analyzed 12,000 genes for regulation by TNF-alpha and the synthetic glucocorticoid, dexamethasone, in the human lung epithelial cell line, A549. Only one gene was induced by both agents, the cellular inhibitor of apoptosis 2 (c-IAP2), which was induced 17-fold and 5-fold by TNF-alpha at 2 h and 24 h, respectively, and increased 14-fold and 9-fold by dexamethasone at 2 h and 24 h, respectively. The combination of the two agents together led to an additive increase (34-fold) at 2 h and a more than additive effect (36-fold) at 24 h. The human c-IAP2 promoter contains two nuclear factor (NF)-kappaB sites that have been shown to be required for transcriptional activation by TNF-alpha. To test whether glucocorticoids regulate the c-IAP2 gene at the level of the promoter, a reporter vector containing 947 bases upstream of the start site of transcription of the human c-IAP2 promoter was linked to luciferase [IAP(-947-+54)-LUC] and transfected into A549 cells. Dexamethasone and TNF-alpha each induced reporter activity, whereas the combination of the two agents led to greater induction of luciferase than either one alone. Truncation of the promoter region containing a putative glucocorticoid response element (GRE) at -515 [IAP(-395-+54)-LUC] or mutation of the GRE in the context of the natural promoter [IAP(-947-+54mutGRE)-LUC] resulted in a loss of dexamethasone-mediated induction of reporter activity. Although the functional NF-kappaB sites were retained in the truncated and mutant c-IAP2 promoter constructs, dexamethasone did not inhibit the TNF-alpha induction of luciferase activity, indicating that GR repression through the NF-kappaB sites did not occur. Regulation of the c-IAP2 gene is therefore unique, as GR and NF-kappaB signaling pathways are usually mutually antagonistic, not cooperative. Treatment of A549 cells with TNF-alpha and/or dexamethasone had no effect on cell death, but the two agents were able to inhibit interferon-gamma/anti-FAS antibody-mediated apoptosis. In human glioblastoma A172 cells, TNF-alpha and dexamethasone together elicited a greater than additive increase in c-IAP2 mRNA levels and also inhibited anti-FAS antibody-mediated A172 cell apoptosis. In contrast, in human CEM-C7 leukemic T cells, whereas TNF-alpha and dexamethasone treatment also led to an increase in c-IAP2 mRNA, the two agents were able to induce apoptosis on their own. However, TNF-alpha and dexamethasone were also able to blunt anti-FAS-induced apoptosis in the T cells. These data indicate that the induction of the antiapoptotic protein, c-IAP2, by glucocorticoids and TNF-alpha correlates with the ability of these agents to inhibit apoptosis in a variety of cell types.


Subject(s)
Apoptosis/drug effects , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Glucocorticoids/pharmacology , Proteins/genetics , Tumor Necrosis Factor-alpha/pharmacology , Cells, Cultured , Drug Synergism , Glioblastoma/metabolism , Glioblastoma/pathology , Glucocorticoids/physiology , Humans , Lung/cytology , Lung/drug effects , Promoter Regions, Genetic/genetics , RNA, Messenger/metabolism , Response Elements/physiology , T-Lymphocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...