Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Organogenesis ; 11(3): 105-21, 2015.
Article in English | MEDLINE | ID: mdl-26060888

ABSTRACT

A persistent clinical demand exists for a suitable arterial prosthesis. In this study, a vascular conduit mimicking the native 3-layered artery, and constructed from the extracellular matrix proteins type I collagen and elastin, was evaluated for its performance as a blood vessel equivalent. A tubular 3-layered graft (elastin-collagen-collagen) was prepared using highly purified type I collagen fibrils and elastin fibers, resembling the 3-layered native blood vessel architecture. The vascular graft was crosslinked and heparinised (37 ± 4 µg heparin/mg graft), and evaluated as a vascular graft using a porcine bilateral iliac artery model. An intra-animal comparison with clinically-used heparinised ePTFE (Propaten®) was made. Analyses included biochemical characterization, duplex scanning, (immuno)histochemistry and scanning electron microscopy. The tubular graft was easy to handle with adequate suturability. Implantation resulted in pulsating grafts without leakage. One week after implantation, both ePTFE and the natural acellular graft had 100% patencies on duplex scanning. Grafts were partially endothelialised (Von Willebrand-positive endothelium with a laminin-positive basal membrane layer). After one month, layered thrombi were found in the natural (4/4) and ePTFE graft (1/4), resulting in occlusion which in case of the natural graft is likely due to the porosity of the inner elastin layer. In vivo application of a molecularly-defined tubular graft, based on nature's matrix proteins, for vascular surgery is feasible.


Subject(s)
Arterial Occlusive Diseases/physiopathology , Blood Vessel Prosthesis/adverse effects , Collagen/chemistry , Elastin/chemistry , Iliac Artery/physiology , Vascular Patency/physiology , Animals , Arterial Occlusive Diseases/etiology , Bioprosthesis , Equipment Failure Analysis , Extracellular Matrix Proteins/chemistry , Female , Graft Rejection , Iliac Artery/surgery , Prosthesis Design , Swine , Treatment Outcome , Vascular Grafting/adverse effects , Vascular Grafting/instrumentation
2.
Int J Radiat Oncol Biol Phys ; 40(3): 681-9, 1998 Feb 01.
Article in English | MEDLINE | ID: mdl-9486620

ABSTRACT

PURPOSE: To study the kinetics of repair in rat spinal cord during continuous interstitial irradiation at different dose rates and to investigate the impact of a rapid dose fall off over the spinal cord thickness. MATERIAL AND METHODS: Two parallel catheters were inserted on each side of the vertebral bodies from the level of T10 to L4. These catheters were afterloaded with two 192Ir- wires of 4 cm length each (activity 1-10 mCi/cm) or connected to the HDR- microSelectron. Experiments have been carried out to obtain complete dose response curves at 7 different dose rates: 0.53, 0.90, 1.64, 2.56, 4.4, 9.9 and 120 Gy/h. Paralysis of the hindlegs after 5 - 6 months and histopathological examination of the spinal cord of each animal were used as experimental endpoints. RESULTS: The distribution of the histological damage was a good reflection of the rapid dose fall - off over the spinal cord, with white matter necrosis or demyelination predominantly seen in the dorsal tracts of the spinal cord or dorsal roots. With each reduction of the dose rate, spinal cord tolerance was significantly increased, with a maximum dose rate factor of 4.3 if the dose rate was reduced from 120 Gy/h to 0.53 Gy/h (ED50 of 17.3 Gy and 75.0 Gy, respectively). Estimates of the repair parameters using different types of analysis are presented. For the direct analysis the best fit of the data was obtained if a biexponential function for repair was used. For the 100% dose prescribed at the ventral side of the spinal cord the alpha/beta ratio is 1.8 Gy (0.8 - 2.8) and two components of repair are observed: a slow component of repair of 2.44 h (1.18 - infinity) and a fast component of 0.15 h (0.02 - infinity). The proportion of the damage repaired with the slow component is 0.59 (0.18 - 1). For the maximum of 150% of the prescribed dose at the dorsal side of the spinal cord the alpha/beta ratio is 2.7 Gy (1.5 - 4.4); the two components for the kinetics of repair remain the same. CONCLUSIONS: Spinal cord radiation tolerance is significantly increased by a reduction in dose rate. Depending on the dose prescription, the alpha/beta ratio is 1.8 or 2.7 Gy for the 100% and 150% of the reference dose (rate), respectively; for the kinetics of repair a biphasic pattern is observed, with a slow component of 2.44 hours and a fast component of 0.15 hours, which is independent of the dose prescription.


Subject(s)
Brachytherapy , Radiation Tolerance/physiology , Spinal Cord/radiation effects , Wound Healing/physiology , Animals , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Male , Rats , Rats, Wistar , Spinal Cord/pathology
3.
Radiother Oncol ; 42(1): 59-67, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9132828

ABSTRACT

PURPOSE: To describe a newly developed technique to study radiation tolerance of rat spinal cord to continuous interstitial irradiation (IRT) at different dose rates. MATERIAL AND METHODS: Two parallel catheters are inserted just laterally on each side of the vertebral bodies from the level of Th10 to L4. These catheters are afterloaded with two 192Ir wires of 4 cm length each (activity 1-2.3 mCi/cm) for the low dose rate (LDR) IRT or connected to the HDR micro-Selectron for the high dose rate (HDR) IRT. Spinal cord target volume is located at the level of Th12-L2. Due to the rapid dose fall-off around the implanted sources, a dose inhomogeneity across the spinal cord thickness is obtained in the dorso-ventral direction. Using the 100% reference dose (rate) at the ventral side of the spinal cord to prescribe the dose, experiments have been carried out to obtain complete dose response curves at average dose rates of 0.49, 0.96 and 120 Gy/h. Paralysis of the hind-legs after 5-6 months and histopathological examination of the spinal cord of each irradiated rat are used as experimental endpoints. RESULTS: The histopathological damage seen after irradiation is clearly reflected the inhomogeneous dose distribution around the implanted catheters, with the damage predominantly located in the dorsal tract of the cord or dorsal roots. With each reduction in average dose rate, spinal cord radiation tolerance is significantly increased. When the dose is prescribed at the 100% reference dose rate, the ED50 (induction of paresis in 50% of the animals) for the HDR-IRT is 17.3 Gy. If the average dose rate is reduced from 120 Gy/h to 0.96 or 0.49 Gy/h, a 2.9- or 4.7-fold increase in the ED50 values to 50.3 Gy and 80.9 Gy is observed; for the dose prescribed at the 150% reference dose rate (dorsal side of cord) ED50 values are 26.0, 75.5 and 121.4 Gy, respectively. Using different types of analysis and in dependence of the dose prescription and reference dose rate, the alpha/beta ratio varies between 1.46 (0.06-3.08 CL) and 2.17 Gy (0.08-4.61). The half time of repair during continuous irradiation is 1.76 h (1.33-2.64), while no indication is found for a biphasic pattern of the kinetics of repair. CONCLUSION: The implantation technique in our study has shown to be a reliable model to compare the effectiveness of HDR- and LDR-interstitial continuous irradiation at different dose rates.


Subject(s)
Brachytherapy/adverse effects , Paralysis/etiology , Radiation Injuries, Experimental/pathology , Spinal Cord/radiation effects , Animals , Dose-Response Relationship, Radiation , Male , Paralysis/pathology , Paresis/etiology , Paresis/pathology , Radiation Dosage , Radiation Injuries, Experimental/physiopathology , Rats , Rats, Wistar , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...