Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(6): 6799-6812, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38294883

ABSTRACT

Antimicrobial peptides (AMPs) can kill bacteria by destabilizing their membranes, yet translating these molecules' properties into a covalently attached antibacterial coating is challenging. Rational design efforts are obstructed by the fact that standard microbiology methods are ill-designed for the evaluation of coatings, disclosing few details about why grafted AMPs function or do not function. It is particularly difficult to distinguish the influence of the AMP's molecular structure from other factors controlling the total exposure, including which type of bonds are formed between bacteria and the coating and how persistent these contacts are. Here, we combine label-free live-cell microscopy, microfluidics, and automated image analysis to study the response of surface-bound Escherichia coli challenged by the same small AMP either in solution or grafted to the surface through click chemistry. Initially after binding, the grafted AMPs inhibited bacterial growth more efficiently than did AMPs in solution. Yet, after 1 h, E. coli on the coated surfaces increased their expression of type-1 fimbriae, leading to a change in their binding mode, which diminished the coating's impact. The wealth of information obtained from continuously monitoring the growth, shape, and movements of single bacterial cells allowed us to elucidate and quantify the different factors determining the antibacterial efficacy of the grafted AMPs. We expect this approach to aid the design of elaborate antibacterial material coatings working by specific and selective actions, not limited to contact-killing. This technology is needed to support health care and food production in the postantibiotic era.


Subject(s)
Antimicrobial Peptides , Escherichia coli , Microscopy , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Coated Materials, Biocompatible/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...