Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
4.
Mol Cell Proteomics ; 4(12): 1920-32, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16127175

ABSTRACT

Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, approximately 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.


Subject(s)
Antibodies, Neoplasm/chemistry , Antibodies/chemistry , Neoplasms/immunology , Proteome/immunology , Antibodies/isolation & purification , Antibodies, Neoplasm/isolation & purification , Blotting, Western , Chromatography, Affinity , Databases, Protein , Epitopes/chemistry , Expressed Sequence Tags , Humans , Neoplasms/genetics , Proteins/immunology , Proteome/isolation & purification , Reference Values
5.
Mol Cell Proteomics ; 2(6): 405-14, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12796447

ABSTRACT

Here we show that an affinity proteomics strategy using affinity-purified antibodies raised against recombinant human protein fragments can be used for chromosome-wide protein profiling. The approach is based on affinity reagents raised toward bioinformatics-designed protein epitope signature tags corresponding to unique regions of individual gene loci. The genes of human chromosome 21 identified by the genome efforts were investigated, and the success rates for de novo cloning, protein production, and antibody generation were 85, 76, and 56%, respectively. Using human tissue arrays, a systematic profiling of protein expression and subcellular localization was undertaken for the putative gene products. The results suggest that this affinity proteomics strategy can be used to produce a proteome atlas, describing distribution and expression of proteins in normal tissues as well as in common cancers and other forms of diseased tissues.


Subject(s)
Chromosomes, Human, Pair 21/metabolism , Proteome/metabolism , Antibodies , Computational Biology , Expressed Sequence Tags , Humans , Organ Specificity , Pilot Projects , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Tissue Array Analysis
6.
FEMS Microbiol Lett ; 210(2): 263-70, 2002 May 07.
Article in English | MEDLINE | ID: mdl-12044685

ABSTRACT

General expression vectors, designed for intracellular expression or secretion of recombinant proteins in the non-pathogenic Staphylococcus carnosus, were constructed. Both vector systems encode two different affinity tags, an upstream albumin binding protein and a downstream hexahistidyl peptide, and are furnished with cleavage sites for two site-specific proteases for optional affinity tag removal. To evaluate the novel vectors, the gene encoding the outer membrane protein A (OmpA) of Klebsiella pneumoniae was introduced into the vectors. Efficient production was demonstrated in both systems, although, as expected for OmpA fusions, somewhat better intracellularly, and the fusion proteins could be recovered as full-length products by affinity chromatography.


Subject(s)
Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Outer Membrane Proteins/genetics , Klebsiella pneumoniae/genetics , Staphylococcus/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/isolation & purification , Electrophoresis, Polyacrylamide Gel , Genetic Vectors/genetics , Immunoblotting , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
7.
J Immunol Methods ; 261(1-2): 199-211, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11861078

ABSTRACT

Affibody-Fc chimeras were constructed by genetic fusion between different affibody affinity proteins with prescribed specificities and an Fc fragment derived from human IgG. Using affibody ligands previously selected for binding to respiratory syncytial virus (RSV) surface protein G and Thermus aquaticus (Taq) DNA polymerase, respectively, affibody-Fc fusion proteins showing spontaneous Fc fragment-mediated homodimerization via disulfide bridges were produced in Escherichia coli and affinity purified on protein A Sepharose from bacterial periplasms at yields ranging between 1 and 6 mg/l culture. Further characterization of the chimeras using biosensor technology showed that the affibody moieties have retained high selectivities for their respective targets after fusion to the Fc fragment. Avidity effects in the target binding were observed for the affibody-Fc chimeras compared to monovalent affibody fusion proteins, indicating that both affibody moieties in the chimeras were accessible and contributed in the binding. Fusion of a head-to-tail dimeric affibody moiety to the Fc fragment resulted in tetravalent affibody constructs which showed even more pronounced avidity effects. In addition, the Fc moiety of the chimeras was demonstrated to be specifically recognized by anti-human IgG antibody enzyme conjugates. One application for this class of "artificial antibodies" was demonstrated in a western blotting experiment in which one of the anti-RSV surface protein G affibody-Fc chimeras was demonstrated to be useful for specific detection of the target protein in a complex background consisting of a total E. coli lysate. The results show that through the replacement of the Fab portion of an antibody for an alternative binding domain based on a less complicated structure, chimeric proteins compatible with bacterial production routes containing both antigen recognition domains and Fc domains can be constructed. Such "artificial antibodies" should be interesting alternatives to, for example, whole antibodies or scFv-Fc fusions as detection devices and in diagnostic or therapeutic applications.


Subject(s)
Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Amino Acid Sequence , Antibody Affinity , Base Sequence , Biosensing Techniques , Blotting, Western , DNA, Recombinant/genetics , Escherichia coli/genetics , HN Protein/immunology , Humans , Polymerase Chain Reaction , Protein Engineering , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Taq Polymerase/immunology , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...