Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(8): 9448-9456, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31986002

ABSTRACT

Metal-organic frameworks with open metal sites are promising materials for gas separations. Particularly, the M2(dobdc) (dobdc4- = 2,5-dioxidobenzenedicarboxylate, M2+ = Co2+, Mn2+, Fe2+, ...) framework has been the Drosophila of this research field and has delivered groundbreaking results in terms of sorption selectivity. However, many studies focus on perfect two-component mixtures and use theoretical models, e.g., the ideal adsorbed solution theory, to calculate selectivities. Within this work, we shed light on the comparability of these selectivities with values obtained from propane/propene multicomponent measurements on the prototypical Co2(dobdc) framework, and we study the impact of impurities like water on the selectivity. Despite the expected capacity loss, the presence of water does not necessarily lead to a decreased selectivity. Density functional theory calculations of the binding energies prove that the water molecules adsorbed to the metal centers introduce new binding sites for the adsorbates.

2.
Dalton Trans ; 48(19): 6564-6570, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31012889

ABSTRACT

Flexible metal-organic frameworks (MOFs) exhibit large potential as next-generation materials in areas such as gas sensing, gas separation and mechanical damping. By using a mixed metal approach, we report how the stimuli reponsive phase transition of flexible pillared-layered MOFs can be tuned over a wide range. Different Cu2+ to Zn2+ metal ratios are incorporated into the materials by using a simple solvothermal approach. The properties of the obtained materials are probed by differential scanning calorimetry and CO2 sorption measurements, revealing stimuli responsive behaviour as a function of metal ratio. Pair distribution functions derived from X-ray total scattering experiments suggest a distortion of the M2 paddlewheel as a function of the Cu content. We rationalize these phenomena by the different distortion energies of Cu2+ and Zn2+ ions to deviate from the square pyramidal structure of the relaxed paddlewheel node. Our work follows on from the large interest in tuning and understanding the materials properties of flexible MOFs, highlighting the large number of parameters that can be used for the targeted manipulation and design of properties of these fascinating materials.

3.
Nat Commun ; 10(1): 346, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664645

ABSTRACT

Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.

4.
Chem Sci ; 9(6): 1654-1660, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29675212

ABSTRACT

We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im)2; M2+ = Co2+ or Zn2+, im- = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore (op) phase with continuous porosity (space group Pbca, bulk modulus ∼1.4 GPa) to a closed pore (cp) phase with inaccessible porosity (space group P21/c, bulk modulus ∼3.3-4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op-cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M2+ ions (3d10 for Zn2+ and 3d7 for Co2+). Our results present the first examples of op-cp phase transitions (i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.

5.
Dalton Trans ; 46(25): 8198-8203, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28621374

ABSTRACT

A series of four Zn2+ metal-organic frameworks containing functionalised isophthalate linkers and 4,4'-bipyridine pillars have been prepared and characterised. Isophthalates which contain -OC3H2n+1 alkoxy side chains (with n = 1, 2 or 3) form frameworks with a 3D pillared-layer topology instead of the typical 2D layer topology of the renowned coordination polymers with an interdigitated structure (CIDs), which is found for shorter -OC2H5 side chains. The gas adsorption properties of the materials were analysed using N2, CO2 and O2 adsorption measurements at low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...