Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 15643, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31653871

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 9(1): 359, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674967

ABSTRACT

Most research laboratories abide by guidelines and mandates set by their research institution regarding the administration of analgesics to control pain during the postoperative period. Unfortunately, measuring pain originating from the head is difficult, making adequate decisions regarding pain control following stereotaxic surgery problematic. In addition, most postsurgical analgesia protocols require multiple injections over several days, which may cause stress and distress during a critical recovery period. Here we sought to (1) assess the degree of postoperative pain following craniotomy in mice, (2) compare the efficacy of three common rodent analgesics (carprofen, meloxicam and buprenorphine) for reducing this pain and (3) determine whether the route of administration (injected or self-administered through the drinking supply) influenced pain relief post-craniotomy. Using the mouse grimace scale (MGS), we found that injectable analgesics were significantly more effective at relieving post-craniotomy pain, however, both routes of administration decreased pain scores in the first 24 h postsurgery. Specifically, buprenorphine administered independently of administration route was the most effective at reducing MGS scores, however, female mice showed greater sensitivity to carprofen when administered through the water supply. Although it is necessary to provide laboratory animals with analgesics after an invasive procedure, there remains a gap in the literature regarding the degree of craniotomy-related pain in rodents and the efficacy of alternative routes of administration. Our study highlights the limitations of administering drugs through the drinking supply, even at doses that are considered to be higher than those currently recommended by most research institutions for treating pain of mild to moderate severity.

3.
Oncoimmunology ; 8(1): e1512329, 2019.
Article in English | MEDLINE | ID: mdl-30546947

ABSTRACT

Multiple immunotherapeutics have been approved for cancer patients, however advanced solid tumors are frequently refractory to treatment. We evaluated the safety and immunogenicity of a vaccination approach with multimodal oncolytic potential in non-human primates (NHP) (Macaca fascicularis). Primates received a replication-deficient adenoviral prime, boosted by the oncolytic Maraba MG1 rhabdovirus. Both vectors expressed the human MAGE-A3. No severe adverse events were observed. Boosting with MG1-MAGEA3 induced an expansion of hMAGE-A3-specific CD4+ and CD8+ T-cells with the latter peaking at remarkable levels and persisting for several months. T-cells reacting against epitopes fully conserved between simian and human MAGE-A3 were identified. Humoral immunity was demonstrated by the detection of circulating MAGE-A3 antibodies. These preclinical data establish the capacity for the Ad:MG1 vaccination to engage multiple effector immune cell populations without causing significant toxicity in outbred NHPs. Clinical investigations utilizing this program for the treatment of MAGE-A3-positive solid malignancies are underway (NCT02285816, NCT02879760).

4.
Zebrafish ; 13 Suppl 1: S153-63, 2016 07.
Article in English | MEDLINE | ID: mdl-27248438

ABSTRACT

The zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community. In this commentary, we review the disease profile of SVCV in fish, discuss the findings of the Canadian government's scientific assessment, how the interpretations of their assessment differ from that of the Canadian research community, and describe the negative impact of these regulations on the Canadian research community and public as it pertains to protecting the health of Canadians.


Subject(s)
Commerce/legislation & jurisprudence , Fish Diseases/prevention & control , Fish Diseases/transmission , Government Regulation , Rhabdoviridae Infections/veterinary , Zebrafish , Animals , Canada , Fish Diseases/virology , Rhabdoviridae/physiology , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/transmission , Rhabdoviridae Infections/virology
5.
Mol Ther ; 23(6): 1066-1076, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25807289

ABSTRACT

Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.


Subject(s)
Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Vaccinia virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Drug Delivery Systems , Feasibility Studies , Female , HeLa Cells , Humans , Injections, Intralesional , Macaca fascicularis/immunology , Male , Neoplasms/blood , Neoplasms/therapy , Neutralization Tests , Pyridones/immunology , Pyridones/pharmacology , Rats , Rats, Inbred F344 , Smallpox Vaccine/blood , Smallpox Vaccine/immunology , Vaccination , Vero Cells
6.
J Immunother ; 36(4): 238-47, 2013 May.
Article in English | MEDLINE | ID: mdl-23603858

ABSTRACT

Virally vectored cancer vaccines comprise a new form of immunotherapy that aim to generate anti-tumor immune responses with potential for tumor clearance and enhanced patient survival. Here, we compared 2 replication-deficient poxviruses modified vaccinia Ankara (MVA) and ALVAC(2) in their ability to induce antigen expression and immunogenicity of the tumor-associated antigens (TAAs) 5T4 and gp100. To facilitate the comparison, recombinant MVA-gp100M and ALVAC(2)-5T4 were constructed to complement existing ALVAC(2)-gp100M and MVA-5T4 vectors. Recombinant TAA expression in chicken embryo fibroblast cells was confirmed by Western blot analysis. 5T4 expression was approximately equal for both viruses, whereas ALVAC-derived gp100 was quickly degraded, at a time point when MVA-derived gp100 was still stable and expressed at high levels. Human leukocyte antigen-A2 transgenic mice were vaccinated with recombinant viruses and the CD8 T-cell responses elicited against each TAA were monitored by interferon-γ enzyme-linked immunospot. No 5T4 peptide responses were detected using splenocytes from mice vaccinated with either vector, whereas vaccination with MVA elicited a significantly higher gp100-specific response than ALVAC(2) at 10 PFU (P<0.001). In CD-1 mice, each vector elicited similar 5T4 antibody responses, whereas MVA was more potent and induced gp100 antibody responses at a lower immunization dose than ALVAC (P<0.001). In this study, immunogenicity varied depending on the viral vector used and reflected vector-associated differences in in vitro TAA expression and stability. These findings suggest that novel vector-transgene combinations must be assessed individually when designing vaccines, and that stability of vector-encoded proteins produced in vitro may be useful as a predictor for in vitro immunogenicity.


Subject(s)
Cancer Vaccines/immunology , Membrane Glycoproteins/immunology , Viral Vaccines/immunology , gp100 Melanoma Antigen/immunology , Animals , Antibodies/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Chick Embryo , Female , Gene Expression , Gene Order , Genetic Vectors/genetics , Genetic Vectors/immunology , Membrane Glycoproteins/genetics , Mice , Neoplasms/immunology , Neoplasms/therapy , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Viral Vaccines/administration & dosage , gp100 Melanoma Antigen/genetics
7.
Infect Immun ; 80(6): 2212-20, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22473606

ABSTRACT

Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.


Subject(s)
Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Bacterial Vaccines , Lung Injury/prevention & control , Pneumonia, Pneumococcal/prevention & control , Streptolysins/immunology , Animals , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Bronchoalveolar Lavage Fluid , Female , Lung Injury/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , Streptococcus pneumoniae/metabolism , Streptolysins/chemistry
8.
J Biol Chem ; 277(12): 9772-9, 2002 Mar 22.
Article in English | MEDLINE | ID: mdl-11773057

ABSTRACT

The apically located epithelial Na(+) channel (alphabetagamma-ENaC) plays a key role in the regulation of salt and fluid transport in the kidney and other epithelia, yet its mode of trafficking to the plasma membrane and its cell surface stability in mammalian cells are poorly understood. Because the expression of ENaC in native tissues/cells is very low, we generated epithelial Madin-Darby canine kidney (MDCK) cells stably expressing alphabetagamma-ENaC, where each subunit is tagged differentially at the intracellular C terminus and the beta-subunit is also Myc-tagged at the ectodomain (alpha(HA)beta(Myc,T7)gamma(FLAG)). ENaC expression in these cells was verified by immunoblotting with antibodies to the tags, and patch clamp analysis has confirmed that the tagged channel is functional. Moreover, using electron microscopy, we demonstrated apical, but not basal, membrane localization of ENaC in these cells. The glycosylation pattern of the intracellular pool of ENaC revealed peptide N-glycosidase F and endoglycosidase H sensitivity. Surprisingly, the cell surface pool of ENaC, analyzed by surface biotinylation, was also core glycosylated and lacked detectable endoglycosidase H-resistant channels. Extraction of the channel from cells in Triton X-100 demonstrated that both intracellular and cell surface pools of ENaC are largely soluble. Moreover, floatation assays to analyze the presence of ENaC in lipid rafts showed that both intracellular and cell surface pools of this channel are not associated with rafts. We have shown previously that the total cellular pool of ENaC is turned over rapidly (t(1/2) approximately 1-2 h). Using cycloheximide treatment and surface biotinylation we now demonstrate that the cell surface pool of ENaC has a similarly short half-life (t(1/2) approximately 1 h), unlike the long half-life reported recently for the Xenopus A6 cells. Collectively, these results help elucidate key aspects of ENaC trafficking and turnover rates in mammalian kidney epithelial cells.


Subject(s)
Cell Membrane/metabolism , Sodium Channels/metabolism , Animals , Biotinylation , Cell Line , Detergents/pharmacology , Dogs , Dose-Response Relationship, Drug , Electrophysiology , Epithelial Cells , Epithelial Sodium Channels , Epitopes , Glycoside Hydrolases/metabolism , Glycosylation , Immunoblotting , Lipids/chemistry , Membrane Microdomains/metabolism , Microscopy, Electron , Microscopy, Immunoelectron , Octoxynol/pharmacology , Patch-Clamp Techniques , Protein Structure, Tertiary , Rats , Time Factors , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...