Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(8): 9282-9319, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32790347

ABSTRACT

As an excellent candidate for lightweight structural materials and nonmetal electrical conductors, carbon nanotube reinforced carbon matrix (CNT/C) composites have potential use in technologies employed in aerospace, military, and defense endeavors, where the combinations of light weight, high strength, and excellent conductivity are required. Both polymer infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) methods have been widely studied for CNT/C composite fabrications with diverse focuses and various modifications. Progress has been reported to optimize the performance of CNT/C composites from broad aspects, including matrix densification, CNT alignment, microstructure control, and interface engineering, etc. Recent approaches, such as using resistance heating for PIP or CVI, contribute to the development of CNT/C composites. To deliver a timely and up-to-date overview of CNT/C composites, we have reviewed the most recent trends in fabrication processes, summarized the mechanical reinforcement mechanism, and discussed the electrical and thermal properties, as well as relevant case studies for high-temperature applications. Conclusions and perspectives addressing future routes for performance optimization are also presented. Hence, this review serves as a rundown of recent advances in CNT/C composites and will be a valuable resource to aid future developments in this field.

2.
Nano Lett ; 19(6): 3871-3877, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31091875

ABSTRACT

Stretchable materials are indispensable for applications such as deformable devices, wearable electronics, and future robotics. However, designs for new elastomers with high stretchability have undergone only limited research. Here we have fabricated highly stretchable Ag+/polyacrylonitrile elastomer with nanoreservoirs of lubricant using cyano-silver complexes. The prepared products feature nanoconfinement structures of lubricant surrounded by polymer chains with coordination bond through chelates of cyano-silver, resulting in an enhanced stretchability of more than 600% from 2%. The elastomeric properties were investigated, and a mechanical response model was proposed, which explained the structural evolution including the polymer chain fluidity under external deformation. Also, the easy breakage and dynamic reformation of cyano-silver coordination complexes promises a strain recovery under various stretching conditions. This elastomer itself can directly work as sensors and open paths to alternative substrates for soft electronics development.

3.
RSC Adv ; 8(23): 12692-12700, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-35541226

ABSTRACT

Large scale manufacturing of electrically conductive carbon nanotube (CNT) sheets with production capability, low cost, and long-term electrical performance stability is still a challenge. A new method to fabricate highly conductive continuous buckypaper (CBP) with roll-to-roll production capability and relatively low cost is reported. The electrical conductivity of CBP can be improved to 7.6 × 104 S m-1 by using an oxidant chemical (i.e. HNO3 and I2) doping method. To compensate for the conductivity degradation caused by the instability of the oxidant chemical doping, a polymer layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) was coated on the chemically doped CBP. The fabricated highly conductive CBP showed stable electrical performance in air for more than a month. This CBP material with high electrical conductivity, relatively low cost, and roll-to-roll manufacturing capability could enable a wide range of engineering applications including flexible conductors, electromagnetic interference (EMI) shielding materials, and electrodes in energy devices.

4.
Microsc Microanal ; 22(3): 666-72, 2016 06.
Article in English | MEDLINE | ID: mdl-27329314

ABSTRACT

Functionalization is critical for improving mechanical properties of carbon nanotubes (CNTs)/polymer nanocomposites. A fundamental understanding of the role of the CNT/polymer interface and bonding structure is key to improving functionalization procedures for higher mechanical performance. In this study, we investigated the effects of chemical functionalization on the nanocomposite interface at atomic resolution to provide direct and quantifiable information of the interactions and interface formation between CNT surfaces and adjacent resin molecules. We observed and compared electronic structures and their changes at the interfaces of nonfunctionalized and functionalized CNT/polymer nanocomposite samples via scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) spectrum imaging techniques. The results show that the state of sp 2 bonding and its distribution at the CNT/resin interface can be clearly visualized through EELS mapping. We found that the functionalized CNT/polymer samples exhibited a lower fraction of sp 2 bonding and a lower π*/σ* ratio compared with the nonfunctionalized cases. A good correlation between near-edge fine structures and low-loss plasmon energies was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...