Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 262: 115313, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37556960

ABSTRACT

Dimethyl disulfide (DMDS) is a relatively new soil fumigant used in agro-industrial crop production to control soil-borne pests that damage crops and reduce yield. The emissions of DMDS after fumigation reduce soil concentrations thus reducing the risk of phytotoxicity to newly planted crops. However, the factors affecting the desorption of DMDS from soil are unclear. In our study, the desorption characteristics of DMDS from soil were measured in response to continuous ventilation. The degradation of DMDS in soil was examined by thermal incubation. The phytotoxic response of newly-planted cucumber (Cucumis sativus) seedlings to DMDS residues was measured by a sand culture experiment. The results showed DMDS desorption and degradation rates fit a first-order model; that 92% of the DMDS desorption occurred in the first hour after fumigant application; and that residue concentrations in the soil at the end of the ventilation period were unlikely to be phytotoxic to newly-planted cucumber seedlings. By the third day of ventilation, the average desorption rate (ADR) of DMDS in Wenshan soil was 4.0 and 3.6 times, respectively, faster than that in Shunyi and Suihua soils and the ADR of DMDS in soil decreased by 40.0% when the soil moisture content increased from 3% to 12% (wt/wt). Moreover, within one hour of ventilation, the ADR of DMDS in soil decreased by 20.1% when the soil bulk density increased from 1.1 to 1.3 g cm-3. The degradation of DMDS in soil, however, was mostly influenced by soil type and moisture content. A slow degradation rate resulted in a high initial desorption concentration of DMDS in soil. Our results indicated that DMDS desorption from soil in response to continuous ventilation was affected by the soil type, moisture content and bulk density. Rapid degradation of DMDS in soil will lower the risk of phytotoxic residues remaining in the soil and reduce emissions during the waiting period. Acceleration of emissions early in the waiting period by managing soil moisture content or increasing soil porosity may shorten the duration of emissions. Alternatively, soil extraction technology could be developed to recover and reduce fumigant emissions.

2.
Water Res ; 235: 119842, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36921357

ABSTRACT

Advanced oxidation processes (AOPs) have been widely used in water and wastewater treatment and have shown excellent performance in remediating contaminated water. However, their oxidation byproducts, including halogenated organics, have recently attracted increasing attention. Alkyl halides are among the most important environmental pollutants in nature. Here, we report a Fenton-like reaction in which alkyl halides can form during the photodegradation of aliphatic carboxylic acids in the presence of Fe(III) and halides. Chloromethane, chloroethane, and 1-chloropropane were produced from the degradation of acetic acid, propionic acid and n-butyric acid, respectively. CH3Cl, CH2Cl2 and CHCl3 were all identified as the products of acetic acid with the yields of approximately 5.1%, 0.2% and 0.005%, respectively. It was demonstrated that hydroxyl radicals, halogen radicals and alkyl radicals were involved in the formation of alkyl halides. A possible mechanism of chloromethane formation was proposed based on the results. In real samples of saline water, the addition of carboxylic acid and Fe(III) significantly promoted the generation of CH3Cl under xenon lamp irradiation. The results indicated that the coexistence of Fe(III), halides and carboxylic acids enhanced the photochemical release of alkyl halides. The reactions described in this paper may contribute to knowledge on the mechanism of halogenated byproduct formation during AOPs.


Subject(s)
Methyl Chloride , Water Pollutants, Chemical , Carboxylic Acids , Ferric Compounds , Oxidation-Reduction , Hydroxyl Radical , Hydrogen Peroxide
3.
PLoS One ; 17(8): e0266347, 2022.
Article in English | MEDLINE | ID: mdl-35917326

ABSTRACT

Biocontrol agents applied after fumigation play an important role to the soil microenvironment. We studied the effect of Trichoderma applied after dimethyl disulfide (DMDS) plus chloropicrin (PIC) fumigation on the cucumber growth, soil physicochemical properties, enzyme activity, taxonomic diversity, and yield through laboratory and field experiments. The results confirmed that Trichoderma applied after fumigation significantly improved soil physicochemical properties, cucumber growth, soil-borne pathogens, and soil enzyme activity. Genetic analysis indicated that Trichoderma applied after fumigation significantly increased the relative abundance of Pseudomonas, Humicola and Chaetomium, and significantly decreased the relative abundance of the pathogens Fusarium spp. and Gibberella spp., which may help to control pathogens and enhanced the ecological functions of the soil. Moreover, Trichoderma applied after fumigation obviously improved cucumber yield (up to 35.6%), and increased relative efficacy of soil-borne pathogens (up to 99%) and root-knot nematodes (up to 96%). Especially, we found that Trichoderma applied after fumigation increased the relative abundance of some beneficial microorganisms (such as Sodiomyces and Rhizophlyctis) that can optimize soil microbiome. It is worth noting that with the decline in the impact of the fumigant, these beneficial microorganisms still maintain a higher abundance when the cucumber plants were uprooted. Importantly, we found one tested biocontrol agent Trichoderma 267 identified and stored in our laboratory not only improved cucumber growth, reduced soil-borne diseases in late cucumber growth stages but also optimized micro-ecological environment which may have good application prospect and help to keep environmental healthy and sustainable development.


Subject(s)
Cucumis sativus , Fusarium , Trichoderma , Fumigation/methods , Soil , Soil Microbiology
4.
Sci Total Environ ; 825: 154012, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35189207

ABSTRACT

Dimethyl disulfide (DMDS) is efficacious against nematodes and other soil-borne pathogens known to reduce crop quality and yield. Previous studies reported inconsistent efficacy and suggested that the diffusion of DMDS varied with different soil types. The effect of soil adsorption on gaseous DMDS diffusion through different soil types is poorly understood. To clarify the role and mechanism of soil adsorption in the diffusion of gaseous DMDS in soil, we have studied the diffusion rate constant (Rt) of gaseous DMDS in soils using a soil column experiment. The adsorption of DMDS at each gas-soil, soil-water and gas-water partition was measured by a batch-equilibrium headspace method. The results showed the DMDS adsorption equilibrium was well-described by the nonlinear Freundlich isotherm and the linear Henry isotherm. Rt values were strongly negatively correlated with the Henry coefficient (Kd) values. The Kd values of dry soil were several orders of magnitude higher than those observed in moist soil within each moisture content range. The Kd values in dry soil were strongly positively correlated with soil pore size (<2 nm). However, when the soil moisture content ranged from 3 to 12% (w/w), the Kd values were strongly correlated with specific surface area (SSA). Elevated temperatures promoted the gaseous phase of DMDS (consistent with Henry's Law) and its diffusion through soil. The soil-water partition coefficient (K'f) ranged from 1.83 to 2.20 µg11/n mL1/n g-1 in tested soils. Our results suggest that the DMDS vapor-phase diffusion in soil was significantly affected by soil adsorption, which in turn depended on the soil's properties especially the SSA and soil moisture content. These findings suggest applicators can reduce the risk of unsatisfactory and inconsistent efficacy results against soil-borne pests by adjusting the DMDS dose and fumigation period according to soil type, moisture conditions, and other environmental factors.


Subject(s)
Soil Pollutants , Soil , Adsorption , Disulfides , Gases , Soil Pollutants/analysis , Water
5.
Pest Manag Sci ; 78(1): 73-85, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34432938

ABSTRACT

BACKGROUND: Soil fumigants-the most effective agrochemicals for managing soil-borne diseases-have been used extensively. However, high volatility, moderate toxicity and insufficient effective duration considerably limit their application. In the present study, interface polymerization was used to combine modified biochar (BC) and polyurea microcapsules (MCs) to co-encapsulate allyl isothiocyanate (AITC), developing a model fumigant for controlled release (AITC@BC-MCs). RESULTS: The physical characteristics of BC modified by sand-milling were significantly improved. In addition, chemical properties and morphological features of AITC@BC-MCs characterized by integrated methods revealed successful preparation of BC-MCs. Compared with monolayer MCs, BC-MCs could significantly delay AITC release owing to the composite obstruction effect. Moreover, modifying BC endowed the cargo molecules with a pH-responsive release property. Additionally, this composite showed a longer persistent duration by prolonging AITC degradation half-life, which was 3.2-3.5-fold greater than that of the AITC technical concentrate under different soil conditions. Finally, the control efficacy of the AITC@BC-MC against pathogens, including nematodes and fungi, as well as against weeds was significantly enhanced at the same dose, but the composite did not inhibit seed germination and growth after 10 days when fumigated soil was aerated. CONCLUSION: Construction of a composite encapsulation system enhanced pesticide efficacy, reduced dose via controlled release and delayed fumigant degradation in soil, indicating the great potential of this strategy for developing an effective and environmentally friendly fumigant formulation. © 2021 Society of Chemical Industry.


Subject(s)
Pesticides , Soil , Capsules , Charcoal , Delayed-Action Preparations , Pesticides/analysis , Polymerization , Polymers
6.
Environ Pollut ; 286: 117460, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34438480

ABSTRACT

Chloropicrin (CP) controls soil-borne plant diseases caused by pathogenic microbes, increases crop yield, but has a long-term inhibitory effect on beneficial soil microorganisms. Therefore, we evaluated the effects of biofumigation material fresh chicken manure (FCM) on soil microorganisms, and the duration of those effects in this experiment. Our results showed that in the laboratory, FCM significantly increased substrate-induced respiration (SIR) of soil microorganisms by 2.2-3.2 times at 80 d compared to the control, however, CP significantly inhibited the SIR of soil microorganisms. FCM and CP increased NH4+-N concentration within 40 days which then returned to the control level. FCM increased NO3--N by 2.82-5.78 times by 80 days, compared with the control, while the concentration of NO3--N in the CP treatment was not significantly different from the control at the 80 day. Although in the laboratory FCM inhibited the relative abundance of 16 S rRNA and the nitrogen cycle functional genes AOA amoA, AOB amoA, nirK and nosZ over a 40-day period, the taxonomic diversity of soil bacteria and fungi in the FCM treatment were restored to unfumigated level within 90 days in the field. However, CP treatment has a strong inhibitory effect on soil microorganisms after 90 days. Importantly, the relative abundance of some beneficial microorganisms that control soil-borne pathogenic microbes or degrade pollutants increased significantly in FCM, including Bacillus, Pseudomonas and Streptomyces bacterial genera and Chaetomium and Mycothermus fungal genera. Noteworthy, like CP, FCM still had a strong inhibitory effect on Fusarium at 90 d. Our results indicated that FCM not only increased the content of inorganic nitrogen and improved the respiration rate of soil microorganisms, but it also shortened the recovery time of beneficial soil microorganisms and increased taxonomic diversity. Our previous reports showed that FCM and CP treatments had the same effect in disease control and crop growth. Combined with the results of this experiment, we believe that FCM has the potential to replace CP, which would eliminate CP's detrimental environmental impact, improve farmer safety and promote sustainable crop production.


Subject(s)
Fumigation , Soil , Animals , Bacteria , Chickens , Fungi , Hydrocarbons, Chlorinated , Manure , Soil Microbiology
7.
Ecotoxicol Environ Saf ; 220: 112362, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34087650

ABSTRACT

Chloropicrin (Pic) and dazomet (DZ) are effective soil fumigants that are often used to reduce soil-borne pathogens that would otherwise reduce crop yield. As Pic is scheduled to be banned, we investigated whether its consumption could be halved by alternating it with DZ. We observed that Pic alternated with DZ increased the soil NH4+-N content by 28.74-47.07 times, increased available potassium content by 40.80%-46.81% and increased electrical conductivity by 39.23%-85.81%. It generally improved the soil's physicochemical properties. High-throughput DNA sequencing showed that Pic alternated with DZ changed the taxonomic diversity of bacteria and fungi by increasing the relative abundance of Bacillus and Firmicutes, and by decreasing Proteobacteria, Acidobacteria and Sphingomonas. Moreover, Pic alternated with DZ can inhibit key soil pathogens by more than 90% and significantly increased strawberry yield by 78.22%-116.12%. In terms of strawberry production, we recommend using DZ in the first year and Pic in the second year. Our results showed significant ecological benefit and yield benefit when Pic consumption was halved by alternating it with DZ.


Subject(s)
Fragaria/growth & development , Hydrocarbons, Chlorinated/pharmacology , Microbiota/drug effects , Pesticides/pharmacology , Thiadiazines/pharmacology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fragaria/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Nutrients/analysis , Soil/chemistry , Soil Microbiology
8.
Sci Total Environ ; 773: 145293, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940723

ABSTRACT

Dimethyl disulfide (DMDS), a soil fumigant, is an effective, broad-spectrum compound that often replaces bromomethane (MB) in the prevention and treatment of soil-borne diseases. However, the disadvantages of DMDS include toxicity, volatility, pungent odor, risk of human exposure, and environmental pollution. Cyclodextrin (CD) has been widely used as a carrier of chemicals in many industries due to its functional advantages and safety. In this study, a DMDS-controlled release formulation was developed by encapsulating DMDS in the cavity of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). This formulation reduced DMDS usage and production costs. Orthogonal experimental design, Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM), Thermal gravity analysis (TGA) characterization, efficacy comparison, safety, and other aspects of the evaluation showed that under the best preparation conditions, the encapsulation rate was 81.49%. The efficacy of DMDS@HP-ß-CD was similar to unformulated DMDS. The efficacy duration of the formulation was about two times longer than DMDS, and it was safer to use. This study reveals a cyclodextrin-DMDS formulation with reduced toxicity, longer duration, environmental safety and sustainability.


Subject(s)
Disulfides , 2-Hydroxypropyl-beta-cyclodextrin , Delayed-Action Preparations , Humans , Spectroscopy, Fourier Transform Infrared
9.
Sci Total Environ ; 738: 140345, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32806339

ABSTRACT

Although fumigants can effectively control soil-borne diseases they are typically harmful to beneficial microorganisms unless methods are developed to encourage their survival after fumigation. The soil fumigant 1,3-dichloropropene (1,3-D) is widely used because of its effective management of pathogenic nematodes and weeds. After fumigation with 1,3-D, Bacillus subtilis and Trichoderma harzianum fertilizer (either singularly or together) or humic acid were added to soil that had been used to produce tomatoes under continuous production for >20 years. We evaluated changes to the soil's physicochemical properties and enzyme activity in response to these fertilizer treatments, and the effects of these changes on beneficial bacteria. Fertilizer applied after fumigation increased the content of ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium and organic matter, and it promoted an increase in pH and electrical conductivity. The activity of urease, sucrase and catalase enzymes in the soil increased after fumigation. Taxonomic identification of bacteria using genetic analysis techniques showed that fertilizer applied after fumigation increased the abundance of Actinobacteria and the relative abundance of the biological control genera Sphingomona, Pseudomonas, Bacillus and Lysobacter. The abundance of these beneficial bacteria increased significantly when B. subtilis and T. harzianum were applied together. These results showed that fertilizer applied after fumigation can increase the abundance of beneficial microorganisms in the soil within a short period of time, which improved the soil's fertility, ecological balance and potentially crop quality and yield.


Subject(s)
Fertilizers , Fumigation , Allyl Compounds , Bacteria , Hydrocarbons, Chlorinated , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...