Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 50, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027659

ABSTRACT

The genes in polyphyllins pathway mixed with other steroid biosynthetic genes form an extremely complex biosynthetic network in Paris polyphylla with a giant genome. The lack of genomic data and tissue specificity causes the study of the biosynthetic pathway notably difficult. Here, we report an effective method for the prediction of key genes of polyphyllin biosynthesis. Full-length transcriptome from eight different organs via hybrid sequencing of next generation sequencingand third generation sequencing platforms annotated two 2,3-oxidosqualene cyclases (OSCs), 216 cytochrome P450s (CYPs), and 199 UDP glycosyltransferases (UGTs). Combining metabolic differences, gene-weighted co-expression network analysis, and phylogenetic trees, the candidate ranges of OSC, CYP, and UGT genes were further narrowed down to 2, 15, and 24, respectively. Beside the three previously characterized CYPs, we identified the OSC involved in the synthesis of cycloartenol and the UGT (PpUGT73CR1) at the C-3 position of diosgenin and pennogenin in P. polyphylla. This study provides an idea for the investigation of gene cluster deficiency biosynthesis pathways in medicinal plants.


Subject(s)
Biosynthetic Pathways/genetics , Genes, Plant/physiology , Melanthiaceae/genetics , Saponins/genetics
2.
Res Vet Sci ; 138: 62-68, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34111715

ABSTRACT

Haemophilus parasuis is the main agent of Glässer's disease, which causes substantial losses in pig production. However, the pathogenic mechanism and virulence factors of H. parasuis have not been fully determined. In this study, berberine is shown to have a good therapeutic effect in vivo against H. parasuis; the minimal inhibitory concentration (MIC) in vitro was 2 µg/mL. Berberine inhibited H. parasuis adhesion to and invasion of PK-15 pig kidney cells. Proteomics studies of H. parasuis after berberine treatment identified a total of 97 differentially-expressed proteins; 35 upregulated and 62 downregulated. Bioinformatics analysis showed that berberine may inhibit the growth of H. parasuis by affecting outer membrane proteins, transferrins, and energy metabolism. This study provides a basis for the development of new antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Berberine/pharmacology , Gene Expression Regulation , Haemophilus parasuis/drug effects , Proteome , Animals , Cell Line , Haemophilus Infections/drug therapy , Haemophilus Infections/veterinary , Microbial Sensitivity Tests/veterinary , Sus scrofa , Swine , Swine Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...