Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 683228, 2021.
Article in English | MEDLINE | ID: mdl-34234798

ABSTRACT

Melatonin is an important bioactive molecule in plants. Two synthetases, N-acetylserotonin methyltransferase (ASMT) and serotonin N-acetyltransferase (SNAT) are involved in the final two steps of melatonin synthesis. Melatonin participates in responses to a variety of biotic and abiotic stresses in plants, but few studies have addressed the roles of endogenous melatonin in pathogen resistance. We investigated the role of endogenous melatonin in resistance to Botrytis cinerea infection in an Arabidopsis thaliana model system. Plant lines that overexpressed ASMT or SNAT through genetic manipulation showed upregulated expression of resistance genes PR1 and PR5, transcription factor gene WRKY33, and jasmonic acid (JA) defense pathway marker gene PDF1.2, and downregulated transcription factor gene MYC2 in JA signaling pathway. Higher melatonin content also enhanced the activity of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), increased JA content, reduced plant disease symptoms, and reduced lesion size in leaves. These findings indicate that endogenous melatonin enhances plant resistance to B. cinerea infection. In contrast, ASMT and SNAT gene silencing lines showed opposite results and were more susceptible to B. cinerea. Thus, it can be demonstrated that melatonin functions as an effective regulator of plant stress resistance at the genetic level. A schematic model is presented for its role in resistance to B. cinerea infection. Our findings also helped to elucidate the associated signal transduction pathways and interactions between melatonin and other plant hormones.

2.
Plant Cell Environ ; 44(1): 114-129, 2021 01.
Article in English | MEDLINE | ID: mdl-32860452

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant defences against a variety of biotic and abiotic stresses, including UV-B stress. Molecular mechanisms underlying functions of melatonin in plant UV-B responses are poorly understood. Here, we show that melatonin effect on molecular signalling pathways, physiological changes and UV-B stress resistance in Arabidopsis. Both exogenous and endogenous melatonin affected expression of UV-B signal transduction pathway genes. Experiments using UV-B signalling component mutants cop1-4 and hy5-215 revealed that melatonin not only acts as an antioxidant to promote UV-B stress resistance, but also regulates expression of several key components of UV-B signalling pathway, including ubiquitin-degrading enzyme (COP1), transcription factors (HY5, HYH) and RUP1/2. Our findings indicate that melatonin delays and subsequently enhances expression of COP1, HY5, HYH and RUP1/2, which act as central effectors in UV-B signalling pathway, thus regulating their effects on antioxidant systems to protect the plant from UV-B stress.


Subject(s)
Arabidopsis/radiation effects , Melatonin/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Signal Transduction/radiation effects , Stress, Physiological , Ultraviolet Rays/adverse effects
3.
Gene ; 713: 143974, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31301484

ABSTRACT

An orthologous gene of SEPALLATA1, designated as IiSEP1, was isolated from Isatis indigotica. The genomic DNA of IiSEP1 is 3.1 Kb in length. The full-length cDNA of IiSEP1 is 1481 bp and contains a 756 bp ORF encoding a 251-amino-acid protein. Sequence comparison revealed that IiSEP1 belonged to the MADS-box gene family. IiSEP1 contains 7 exons and 6 introns, showing similar exon-intron structure with Arabidopsis SEP1. Phylogenetic analysis suggested that IiSEP1 belonged to AGL2/SEP subfamily and was likely to be an I. indigotica ortholog of Arabidopsis SEP1. Quantitative real-time PCR showed that IiSEP1 was predominantly expressed in the reproductive organs. Ectopic expression of IiSEP1 in Arabidopsis resulted in early flowering, accompanied with the reduction of inflorescence number and the production of terminal flower on the top of the main stems. Moreover, IiSEP1 overexpressing flowers generated numerous variations in phenotype. The sepals were changed into petal-sepal mosaic structures or displayed carpelloid features, and transparent ovules were formed in internal surface of these sepals. In addition, some flowers were constituted by sepals and pistil, but lacked petals and stamens. Taken together, IiSEP1 might play important roles in reproductive growth of I. indigotica and could affect the morphogenesis of flowers and fruits.


Subject(s)
Arabidopsis/growth & development , Flowers/growth & development , Forkhead Transcription Factors/genetics , Isatis/growth & development , Plant Proteins/genetics , Plants, Genetically Modified/growth & development , Schizosaccharomyces pombe Proteins/genetics , Amino Acid Sequence , Arabidopsis/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Isatis/genetics , MADS Domain Proteins/genetics , Phenotype , Plants, Genetically Modified/genetics , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...