Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2750, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980819

ABSTRACT

S-acylation is a reversible protein post-translational modification mediated by protein S-acyltransferases (PATs). How S-acylation regulates plant innate immunity is our main concern. Here, we show that the plant immune receptor P2K1 (DORN1, LecRK-I.9; extracellular ATP receptor) directly interacts with and phosphorylates Arabidopsis PAT5 and PAT9 to stimulate their S-acyltransferase activity. This leads, in a time-dependent manner, to greater S-acylation of P2K1, which dampens the immune response. pat5 and pat9 mutants have an elevated extracellular ATP-induced immune response, limited bacterial invasion, increased phosphorylation and decreased degradation of P2K1 during immune signaling. Mutation of S-acylated cysteine residues in P2K1 results in a similar phenotype. Our study reveals that S-acylation effects the temporal dynamics of P2K1 receptor activity, through autophosphorylation and protein degradation, suggesting an important role for this modification in regulating the ability of plants in respond to external stimuli.


Subject(s)
Adenosine Triphosphate/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Plant Immunity , Protein Kinases/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/immunology , Acyltransferases/metabolism , Adenosine Triphosphate/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Mutation , Phosphorylation , Plants, Genetically Modified , Protein Binding , Protein Kinases/genetics , Protein Kinases/immunology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/immunology , Receptors, Purinergic P2/metabolism , Signal Transduction , Time Factors
2.
Mol Plant Microbe Interact ; 33(7): 996-1006, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32196398

ABSTRACT

Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.


Subject(s)
Disease Resistance/genetics , Nicotiana/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Tobacco Mosaic Virus/pathogenicity , Carrier Proteins , Plant Diseases/microbiology , Plant Immunity , Plants, Genetically Modified/microbiology , Signal Transduction , Nicotiana/microbiology
3.
Front Plant Sci ; 8: 2263, 2017.
Article in English | MEDLINE | ID: mdl-29379516

ABSTRACT

Topping damage can induce the nicotine synthesis in tobacco roots, which involves the activation of JA and auxin signal transduction. It remains unclear how these hormone signals are integrated to regulate nicotine synthesis. Here we isolated a transcription factor NtWRKY-R1 from the group IIe of WRKY family and it had strong negative correlation with the expression of putrescine N-methyltransferase, the key enzyme of nicotine synthesis pathway. NtWRKY-R1 was specifically and highly expressed in tobacco roots, and it contains two transcriptional activity domains in the N- and C-terminal. The promoter region of NtWRKY-R1 contains two cis-elements which are responding to JA and auxin signals, respectively. Deletion of NtWRKY-R1 promoter showed that JA and auxin signals were subdued by NtWRKY-R1, and the expression of NtWRKY-R1 was more sensitive to auxin than JA. Furthermore, Yeast two-hybrid experiment demonstrated that NtWRKY-R1 can interact with the actin-binding protein. Our data showed that the intensity of JA and auxin signals can be translated into the expression of NtWRKY-R1, which regulates the balance of actin polymerization and depolymerization through binding actin-binding protein, and then regulates the expression of genes related to nicotine synthesis. The results will help us better understand the function of the WRKY-IIe family in the signaling crosstalk of JA and auxin under damage stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...