Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Int J Biol Macromol ; : 133689, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971272

ABSTRACT

Benzyl isothiocyanate (BITC) is a naturally active bacteriostatic substance and κ-carrageenan (KC) is a good film-forming substrate. In the present study, a nanoemulsion incorporating BITC was fabricated with a particle size of 224.1 nm and an encapsulation efficiency of 69.2 %. Subsequently, the acquired BITC nanoemulsion (BITC-NE) was incorporated into the KC-based film, and the light transmittance of the prepared composite films was lower than that of the pure KC film. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that BITC-NE was compatible with the KC matrix. BITC-NE incorporation enhanced the tensile strength of the KC-based films by 33.7 %, decreased the elongation at break by 33.8 %, decreased the water vapor permeability by 60.1 %, increased the maximum thermal degradation temperature by 48.8 %, and decreased the oxygen permeability by 42 % (p < 0.05). Furthermore, the composite films showed enhanced antimicrobial activity against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas fluorescens. The developed KC-based composite films were applied to wrap raw beef, which significantly delayed the increase in total viable count, total volatile base nitrogen content, and thiobarbituric acid reactive substances, and prolonged the shelf-life of the raw beef by up to 10 days. These results indicated that the composite films prepared by incorporating BITC nanoemulsions into KC matrices have great antimicrobial application potential.

2.
J Extracell Biol ; 3(4): e148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38938849

ABSTRACT

Cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity globally. Studies have shown that infections especially bacteraemia and sepsis are associated with increased risks for endothelial dysfunction and related CVDs including atherosclerosis. Extracellular vesicles (EVs) are small, sealed membrane-derived structures that are released into body fluids and blood from cells and/or microbes and are critically involved in a variety of important cell functions and disease development, including intercellular communications, immune responses and inflammation. It is known that EVs-mediated mechanism(s) is important in the development of endothelial dysfunction in infections with a diverse spectrum of microorganisms including Escherichia coli, Candida albicans, SARS-CoV-2 (the virus for COVID-19) and Helicobacter pylori. H. pylori infection is one of the most common infections globally. During H. pylori infection, EVs can carry H. pylori components, such as lipopolysaccharide, cytotoxin-associated gene A, or vacuolating cytotoxin A, and transfer these substances into endothelial cells, triggering inflammatory responses and endothelial dysfunction. This review is to illustrate the important role of EVs in the pathogenesis of infectious diseases, and the development of endothelial dysfunction in infectious diseases especially H. pylori infection, and to discuss the potential mechanisms and clinical implications.

3.
Biomed Environ Sci ; 37(5): 494-502, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843922

ABSTRACT

Objective: To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury (DILI) caused by different drugs and their correlation with clinical indicators. Method: The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests (RUCAM) scoring criteria and clinically diagnosed with DILI. Based on Chinese herbal medicine, cardiovascular drugs, non-steroidal anti-inflammatory drugs (NSAIDs), anti-infective drugs, and other drugs, patients were divided into five groups. Cytokines were measured by Luminex technology. Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results: 73 patients were enrolled. Age among five groups was statistically different ( P = 0.032). Alanine aminotransferase (ALT) ( P = 0.033) and aspartate aminotransferase (AST) ( P = 0.007) in NSAIDs group were higher than those in chinese herbal medicine group. Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in patients with Chinese herbal medicine (IL-6: P < 0.001; TNF-α: P < 0.001) and cardiovascular medicine (IL-6: P = 0.020; TNF-α: P = 0.001) were lower than those in NSAIDs group. There was a positive correlation between ALT ( r = 0.697, P = 0.025), AST ( r = 0.721, P = 0.019), and IL-6 in NSAIDs group. Conclusion: Older age may be more prone to DILI. Patients with NSAIDs have more severe liver damage in early stages of DILI, TNF-α and IL-6 may partake the inflammatory process of DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytokines , Humans , Chemical and Drug Induced Liver Injury/etiology , Male , Female , Middle Aged , Cytokines/blood , Cytokines/metabolism , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Drugs, Chinese Herbal/adverse effects , Alanine Transaminase/blood
4.
Enzyme Microb Technol ; 179: 110464, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38850682

ABSTRACT

Dunaliella salina is an innovative expression system due to its distinct advantages such as high salt tolerance, low susceptibility to contamination, and the absence of the cell wall. While nuclear transformation has been extensively studied, research on D. salina chloroplast transformation remains in the preliminary stages. In this study, we established an efficient chloroplast expression system for D. salina using Golden Gate assembly. We developed a D. salina toolkit comprising essential components such as chloroplast-specific promoters, terminators, homologous fragments, and various vectors. We confirmed its functionality by expressing the EGFP protein. Moreover, we detailed the methodology of the entire construction process. This expression system enables the specific targeting of foreign genes through simple homologous recombination, resulting in stable expression in chloroplasts. The toolkit achieved a relatively high transformation efficiency within a shorter experimental cycle. Consequently, the construction and utilization of this toolkit have the potential to enhance the efficiency of transgenic engineering in D. salina and advance the development of microalgal biofactories.

5.
Neurosci Bull ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869703

ABSTRACT

This study aimed to identify possible pathogenic genes in a 90-member family with a rare combination of multiple neurodegenerative disease phenotypes, which has not been depicted by the known neurodegenerative disease. We performed physical and neurological examinations with International Rating Scales to assess signs of ataxia, Parkinsonism, and cognitive function, as well as brain magnetic resonance imaging scans with seven sequences. We searched for co-segregations of abnormal repeat-expansion loci, pathogenic variants in known spinocerebellar ataxia-related genes, and novel rare mutations via whole-genome sequencing and linkage analysis. A rare co-segregating missense mutation in the CARS gene was validated by Sanger sequencing and the aminoacylation activity of mutant CARS was measured by spectrophotometric assay. This pedigree presented novel late-onset core characteristics including cerebellar ataxia, Parkinsonism, and pyramidal signs in all nine affected members. Brain magnetic resonance imaging showed cerebellar/pons atrophy, pontine-midline linear hyperintensity, decreased rCBF in the bilateral basal ganglia and cerebellar dentate nucleus, and hypo-intensities of the cerebellar dentate nuclei, basal ganglia, mesencephalic red nuclei, and substantia nigra, all of which suggested neurodegeneration. Whole-genome sequencing identified a novel pathogenic heterozygous mutation (E795V) in the CARS gene, meanwhile, exhibited none of the known repeat-expansions or point mutations in pathogenic genes. Remarkably, this CARS mutation causes a 20% decrease in aminoacylation activity to charge tRNACys with L-cysteine in protein synthesis compared with that of the wild type. All family members carrying a heterozygous mutation CARS (E795V) had the same clinical manifestations and neuropathological changes of Parkinsonism and spinocerebellar-ataxia. These findings identify novel pathogenesis of Parkinsonism-spinocerebellar ataxia and provide insights into its genetic architecture.

6.
Plant Physiol Biochem ; 211: 108697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705045

ABSTRACT

Dunaliella salina, a microalga that thrives under high-saline conditions, is notable for its high ß-carotene content and the absence of a polysaccharide cell wall. These unique characteristics render it a prime candidate as a cellular platform for astaxanthin production. In this study, our initial tests in an E. coli revealed that ß-ring-4-dehydrogenase (CBFD) and 4-hydroxy-ß-ring-4-dehydrogenase (HBFD) genes from Adonis aestivalis outperformed ß-carotene hydroxylase (BCH) and ß-carotene ketolase (BKT) from Haematococcus pluvialis counterparts by two-fold in terms of astaxanthin biosynthesis efficiency. Subsequently, we utilized electroporation to integrate either the BKT gene or the CBFD and HBFD genes into the genome of D. salina. In comparison to wild-type D. salina, strains transformed with BKT or CBFD and HBFD exhibited inhibited growth, underwent color changes to shades of red and yellow, and saw a nearly 50% decline in cell density. HPLC analysis confirmed astaxanthin synthesis in engineered D. salina strains, with CBFD + HBFD-D. salina yielding 134.88 ± 9.12 µg/g of dry cell weight (DCW), significantly higher than BKT-D. salina (83.58 ± 2.40 µg/g). This represents the largest amount of astaxanthin extracted from transgenic D. salina, as reported to date. These findings have significant implications, opening up new avenues for the development of specialized D. salina-based microcell factories for efficient astaxanthin production.


Subject(s)
Xanthophylls , Xanthophylls/metabolism , Chlorophyceae/metabolism , Chlorophyceae/genetics , Biosynthetic Pathways/genetics , Chlorophyta/metabolism , Chlorophyta/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Mixed Function Oxygenases , Oxygenases
7.
J Agric Food Chem ; 72(17): 10005-10013, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626461

ABSTRACT

Dunaliella bardawil is a marine unicellular green algal that produces large amounts of ß-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.


Subject(s)
Chlorophyceae , Intramolecular Lyases , Lycopene , cis-trans-Isomerases , Algal Proteins/genetics , Algal Proteins/metabolism , Algal Proteins/chemistry , Amino Acid Sequence , Carotenoids/metabolism , Carotenoids/chemistry , Chlorophyceae/enzymology , Chlorophyceae/genetics , Chlorophyceae/chemistry , Chlorophyceae/metabolism , Chlorophyta/enzymology , Chlorophyta/genetics , Chlorophyta/chemistry , Chlorophyta/metabolism , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , cis-trans-Isomerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Lycopene/metabolism , Lycopene/chemistry , Molecular Docking Simulation , Sequence Alignment
8.
Physiol Plant ; 176(2): e14296, 2024.
Article in English | MEDLINE | ID: mdl-38650503

ABSTRACT

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Subject(s)
Betaine , Choline Dehydrogenase , Salt Tolerance , Betaine/metabolism , Salt Tolerance/genetics , Choline Dehydrogenase/metabolism , Choline Dehydrogenase/genetics , Choline/metabolism , Chlorophyceae/genetics , Chlorophyceae/physiology , Chlorophyceae/enzymology , Chlorophyceae/metabolism , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Molecular Docking Simulation , Sodium Chloride/pharmacology
9.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Article in English | MEDLINE | ID: mdl-38544393

ABSTRACT

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Subject(s)
Glioma , Glutamate-Ammonia Ligase , Magnetic Resonance Imaging , Neovascularization, Pathologic , Animals , Glioma/diagnostic imaging , Glioma/blood supply , Glioma/drug therapy , Neovascularization, Pathologic/diagnostic imaging , Rats , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Male , Cell Line, Tumor
10.
Antioxid Redox Signal ; 40(16-18): 968-989, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497734

ABSTRACT

Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.


Subject(s)
Acetylcysteine , Antioxidants , Diabetes Mellitus, Type 2 , Endothelium, Vascular , Oxidative Stress , Reactive Oxygen Species , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Acetylcysteine/therapeutic use , Acetylcysteine/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Animals , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Antioxidants/therapeutic use , Antioxidants/pharmacology , Antioxidants/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology
11.
Nat Microbiol ; 9(3): 848-863, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326570

ABSTRACT

Engineered microbial consortia often have enhanced system performance and robustness compared with single-strain biomanufacturing production platforms. However, few tools are available for generating co-cultures of the model and key industrial host Saccharomyces cerevisiae. Here we engineer auxotrophic and overexpression yeast strains that can be used to create co-cultures through exchange of essential metabolites. Using these strains as modules, we engineered two- and three-member consortia using different cross-feeding architectures. Through a combination of ensemble modelling and experimentation, we explored how cellular (for example, metabolite production strength) and environmental (for example, initial population ratio, population density and extracellular supplementation) factors govern population dynamics in these systems. We tested the use of the toolkit in a division of labour biomanufacturing case study and show that it enables enhanced and tuneable antioxidant resveratrol production. We expect this toolkit to become a useful resource for a variety of applications in synthetic ecology and biomanufacturing.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Microbial Consortia/genetics , Synthetic Biology , Engineering
12.
Int J Nanomedicine ; 19: 1273-1285, 2024.
Article in English | MEDLINE | ID: mdl-38348176

ABSTRACT

Purpose: To investigate the inhibition of Streptococcus mutans (S.mutans) and its biofilm by AgBr-nanoparticles (NP) @CTMAB (cetyltrimethyl-ammonium bromide) and evaluate the changes in Polymethyl methacrylate (PMMA)'s surface roughness (Ra), microhardness, and flexural strength during prolonged immersion in AgBr-NP@CTMAB for application in the denture cleaning industry. Patients and Methods: The antibacterial activity of AgBr-NP@CTMAB against S.mutans was measured colony formation assay, OD600 and laser confocal microscopy. Changes in the specimens' values for surface roughness, microhardness, and flexural strength (MPa) were measured after immersion solutions for 180 or 360 days. Results: The AgBr-NP@CTMAB solution exhibited a robust antibacterial effect on planktonic S. mutans, with a minimum bactericidal concentration of 5 µg/mL. The 10 µg/mL AgBr-NP@CTMAB solution efficiently inhibited S. mutans biofilm formation. (2) No significant difference in surface roughness after immersion in AgBr-NP@CTMAB (10 µg/mL and 20 µg/mL) comparing with distilled water (P > 0.05) and Polident had significantly higher than distilled water (P < 0.05). There was a significant decrease in the surface hardness of the PMMA specimens that were immersed in the Polident compared with those in distilled water (P < 0.05). While, no significant differences in surface hardness after immersion in the AgBr-NP@CTMAB (P > 0.05). The result of flexural strength suggested that there was no statistically significant difference (P < 0.05) between AgBr-NP@CTMAB as well as Polident and water. Conclusion: AgBrNP@CTMAB can efficiently inhibit the growth of plankton S.mutans and biofilm formation, without affecting the flexural strength, microhardness, or surface roughness of PMMA. Therefore, AgBrNP@CTMAB holds promise as a new denture cleaning agent.


Subject(s)
Borates , Nanoparticles , Polymethyl Methacrylate , Sulfates , Hardness , Flexural Strength , Streptococcus mutans , Denture Bases , Water , Anti-Bacterial Agents/pharmacology , Surface Properties , Materials Testing
13.
Opt Lett ; 49(3): 578-581, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300063

ABSTRACT

An approach to obtain a yellow laser is demonstrated for the first time to our knowledge by the employment of an Nd3+-doped YVO4 crystal and a LBO frequency-doubling crystal. Differing from the previous stimulated self-Raman radiation of Nd:YVO4, a direct 1176 nm lasing, without a high-intensity intracavity 1064 nm laser, was realized by utilizing an electron-phonon coupling effect and amplifying the thermally activated vibronic transitions. Combining with intracavity frequency-doubling, a yellow laser at 588 nm was obtained. At the pump power of 14.3 W, the output power of the yellow laser was 1.17 W, corresponding to a diode-to-visible efficiency of 8.2%. Moreover, for the first time, the yellow laser at 584 nm with output power of 164 mW was realized by tuning the filter, indicating the great potential of such an electron-phonon coupling laser for a wavelength extension in the yellow regime.

14.
Org Lett ; 26(4): 834-838, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38240237

ABSTRACT

The first asymmetric synthesis of a scillascillin-type homoisoflavonoid was reported. Key reactions for the asymmetric synthesis of benzocyclobutene include catalytic reductive desymmetrization of malonic ester and an intramolecular C-H activation of the methyl group.

15.
Phys Chem Chem Phys ; 26(5): 3974-3980, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38221866

ABSTRACT

On the basis of variable-temperature single-crystal X-ray diffraction, variable-temperature/frequency dielectric analysis, variable-temperature solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, here we present a new model of crystalline supramolecular rotor (i-PrNHMe2)[CdBr3], where a conformationally flexible near-spherical (i-PrNHMe2)+ cation functions as a rotator and a rod-like anionic coordination polymer {[CdBr3]-}∞ acts as the stator, and the adhesion of them is realized by charge-assisted hydrogen bonds.

16.
Sci China Life Sci ; 67(1): 67-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37864083

ABSTRACT

Chronic pain often develops severe mood changes such as depression. However, how chronic pain leads to depression remains elusive and the mechanisms determining individuals' responses to depression are largely unexplored. Here we found that depression-like behaviors could only be observed in 67.9% of mice with chronic neuropathic pain, leaving 32.1% of mice with depression resilience. We determined that the spike discharges of the ventral tegmental area (VTA)-projecting lateral habenula (LHb) glutamatergic (Glu) neurons were sequentially increased in sham, resilient and susceptible mice, which consequently inhibited VTA dopaminergic (DA) neurons through a LHbGlu-VTAGABA-VTADA circuit. Furthermore, the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner. Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain. Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.


Subject(s)
Chronic Pain , Habenula , Mice , Animals , Ventral Tegmental Area/metabolism , Habenula/metabolism , Depression , gamma-Aminobutyric Acid/metabolism
17.
Small ; 20(7): e2306820, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37802970

ABSTRACT

Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.

18.
Chinese Pharmacological Bulletin ; (12): 514-520, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013644

ABSTRACT

Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway.

19.
Acta Pharmaceutica Sinica B ; (6): 667-681, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011254

ABSTRACT

Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.

20.
Antioxidants (Basel) ; 12(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38136193

ABSTRACT

Atherosclerosis remains a leading cause of cardiovascular diseases. Although the mechanism for atherosclerosis is complex and has not been fully understood, inflammation and oxidative stress play a critical role in the development and progression of atherosclerosis. N-acetylcysteine (NAC) has been used as a mucolytic agent and an antidote for acetaminophen overdose with a well-established safety profile. NAC has antioxidant and anti-inflammatory effects through multiple mechanisms, including an increase in the intracellular glutathione level and an attenuation of the nuclear factor kappa-B mediated production of inflammatory cytokines like tumor necrosis factor-alpha and interleukins. Numerous animal studies have demonstrated that NAC significantly decreases the development and progression of atherosclerosis. However, the data on the outcomes of clinical studies in patients with atherosclerosis have been limited and inconsistent. The purpose of this review is to summarize the data on the effect of NAC on atherosclerosis from both pre-clinical and clinical studies and discuss the potential mechanisms of action of NAC on atherosclerosis, as well as challenges in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...