Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 80(6): 2860-2873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38375972

ABSTRACT

BACKGROUND: Adaptation of specialist insects to their host plants and defense responses of plants to phytophagous insects have been extensively recognized while the dynamic interaction between these two events has been largely underestimated. Here, we provide evidence for characterization of an unrevealed dynamic interaction mode of digestive enzymes of specialist insect silkworm and inhibitor of its host plant mulberry tree. RESULTS: MnKTI-1, a mulberry Kunitz-type protease inhibitor, whose messenger RNA (mRNA) transcription and protein expression in mulberry leaf were severely triggered and up-regulated by tens of times in a matter of hours in response to silkworm, Bombyx mori, and other mulberry pest insects, suggesting a quick response and broad spectrum to insect herbivory. MnKTI-1 proteins were detected in gut content and frass of specialist B. mori, and exhibited significant post-ingestive stability. Recombinant refolded MnKTI-1 (rMnKTI-1) displayed binding affinity to digestive enzymes and a dual inhibitory activity to α-amylase BmAmy and serine protease BmSP2956 in digestive juice of silkworm. Moreover, data from in vitro assays proved that the inhibition of recombinant rMnKTI-1 to BmAmy can be reverted by pre-incubation with BmSP15920, an inactivated silkworm digestive protease that lack of complete catalytic triad. CONCLUSION: These findings demonstrate that mulberry MnKTI-1 has the potential to inhibit the digestive enzyme activities of its specialist insect herbivore silkworm, whereas this insect may employ inactivated proteases to block protease inhibitors to accomplish food digestion. The current work provides an insight to better understand the interacting mode between host plant Kunitz protease inhibitors and herbivorous insect digestive enzymes. © 2024 Society of Chemical Industry.


Subject(s)
Bombyx , Morus , Plant Proteins , alpha-Amylases , Animals , Bombyx/enzymology , Morus/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , alpha-Amylases/metabolism , alpha-Amylases/antagonists & inhibitors , Serine Proteases/metabolism , Serine Proteases/chemistry , Serine Proteases/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/antagonists & inhibitors , Herbivory , Larva/enzymology , Larva/growth & development , Peptides
2.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074049

ABSTRACT

The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.


Subject(s)
Aging/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , MicroRNAs/metabolism , Morus/metabolism , Plant Proteins/metabolism , Aging/genetics , Arabidopsis/genetics , Computational Biology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Hydrastis/genetics , Hydrastis/metabolism , MicroRNAs/genetics , Morus/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Populus/genetics , Populus/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...