Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 18(9): 2011-2018, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36926727

ABSTRACT

The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributors to the failure of sensory and motor functional recovery following spinal cord injury. Heat shock transcription factor 1 (HSF1), a master regulator of the heat shock response, plays neurogenetic and neuroprotective roles in the damaged or diseased central nervous system. However, the underlying mechanism has not been fully elucidated. In the present study, we used a gecko model of spontaneous nerve regeneration to investigate the potential roles of gecko HSF1 (gHSF1) in the regulation of neurite outgrowth and inflammatory inhibition of macrophages following spinal cord injury. gHSF1 expression in neurons and microglia at the lesion site increased dramatically immediately after tail amputation. gHSF1 overexpression in gecko primary neurons significantly promoted axonal growth by suppressing the expression of suppressor of cytokine signaling-3, and facilitated neuronal survival via activation of the mitogen-activated extracellular signal-regulated kinase/extracellular regulated protein kinases and phosphatidylinositol 3-kinase/protein kinase B pathways. Furthermore, gHSF1 efficiently inhibited the macrophage-mediated inflammatory response by inactivating IkappaB-alpha/NF-kappaB signaling. Our findings show that HSF1 plays dual roles in promoting axonal regrowth and inhibiting leukocyte inflammation, and provide new avenues of investigation for promoting spinal cord injury repair in mammals.

2.
Int J Biol Sci ; 18(8): 3313-3323, 2022.
Article in English | MEDLINE | ID: mdl-35637972

ABSTRACT

We examined the expression and the potential biological function of HBO1 in non-small cell lung cancer (NSCLC). TCGA and Oncomine databases showed that HBO1 transcripts were elevated in NSCLC. Furthermore, in local NSCLC tumor tissues HBO1 expression was higher than that in matched adjacent lung tissues. In primary and immortalized NSCLC cells, HBO1 shRNA robustly inhibited cell viability, proliferation and migration. Moreover, HBO1 knockout by CRISPR/Cas9 induced significant anti-tumor activity in NSCLC cells. Conversely, ectopic HBO1 overexpression in primary NSCLC cells increased proliferation and migration. H3-H4 histone acetylation and expression of several potential oncogenic genes (CCR2, MYLK, VEGFR2 and OCIAD2) were significantly decreased in NSCLC cells with HBO1 silencing or knockout. They were however increased after HBO1 overexpression. Intratumoral injection of HBO1 shRNA-expressing adeno-associated virus hindered the growth of A549 cell xenografts and primary NSCLC cell xenografts in nude mice. H3-H4 histone acetylation as well as expression of HBO1 and HBO1-dependent genes were decreased in HBO1-silenced NSCLC xenograft tissues. An HBO1 inhibitor WM-3835 potently inhibited NSCLC cell growth. Together, HBO1 overexpression promotes NSCLC cell growth.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Histone Acetyltransferases , Lung Neoplasms , Acetylation , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Histone Acetyltransferases/genetics , Histones/genetics , Histones/metabolism , Humans , Lung Neoplasms/genetics , Mice , Mice, Nude , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...