Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2166-2179, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170968

ABSTRACT

Hypoxia is a pervasive feature of solid tumors, which significantly limits the therapeutic effect of photodynamic therapy (PDT) and further influences the immunotherapy efficiency in breast cancer. However, the transient alleviation of tumor hypoxia fails to address the underlying issue of increased oxygen consumption, resulting from the rapid proliferation of tumor cells. At present, studies have found that the reduction of the oxygen consumption rate (OCR) by cytochrome C oxidase (COX) inhibition that induced oxidative phosphorylation (OXHPOS) suppression was able to solve the proposed problem. Herein, we developed a specific mitochondrial-targeting nanotrapper (I@MSN-Im-PEG), which exhibited good copper chelating ability to inhibit COX for reducing the OCR. The results proved that the nanotrapper significantly alleviated the hypoxic tumor microenvironment by copper chelation in mitochondria and enhanced the PDT effect in vitro and in vivo. Meanwhile, the nanotrapper improved photoimmunotherapy through both enhancing PDT-induced immunogenetic cell death (ICD) effects and reversing Treg-mediated immune suppression on 4T1 tumor-bearing mice. The mitochondrial-targeting nanotrapper provided a novel and efficacious strategy to enhance the PDT effect and amplify photoimmunotherapy in breast cancer.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Photochemotherapy/methods , Copper/pharmacology , Tumor Hypoxia , Cell Line, Tumor , Neoplasms/drug therapy , Hypoxia/drug therapy , Immunotherapy , Mitochondria/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/metabolism , Tumor Microenvironment
2.
Acta Biomater ; 167: 463-472, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37302733

ABSTRACT

Nitric oxide (NO) is a crucial gaseous medium for tumor growth and progression, but it may also cause mitochondrial disorder and DNA damage by drastically increasing its concentration in tumor. Due to its challenging administration and unpredictable release, NO based gas therapy is difficult to eliminate malignant tumor at low safe doses. To address these issues, herein, we develop a multifunctional nanocatalyst called Cu-doped polypyrrole (CuP) as an intelligent nanoplatform (CuP-B@P) to deliver the NO precursor BNN6 and specifically release NO in tumors. Under the aberrant metabolic environment of tumors, CuP-B@P catalyzes the conversion of antioxidant GSH into GSSG and excess H2O2 into ·OH through Cu+/Cu2+ cycle, which results in oxidative damage to tumor cells and the concomitant release of cargo BNN6. More importantly, after laser exposure, nanocatalyst CuP can absorb and convert photons into hyperthermia, which in turn, accelerates the aforesaid catalytic efficiency and pyrolyzes BNN6 into NO. Under the synergistic effect of hyperthermia, oxidative damage, and NO burst, almost complete tumor elimination is achieved in vivo with negligible toxicity to body. Such an ingenious combination of NO prodrug and nanocatalytic medicine provides a new insight into the development of NO based therapeutic strategies. STATEMENT OF SIGNIFICANCE: A hyperthermia-responsive NO delivery nanoplatform (CuP-B@P) based on Cu-doped polypyrrole was designed and fabricated, in which CuP catalyzed the conversion of H2O2 and GSH into ·OH and GSSG to induce intratumoral oxidative damage. After laser irradiation, hyperthermia ablation and responsive release of NO further coupled with oxidative damage to eliminate malignant tumors. This versatile nanoplatform provides new insights into the combined application of catalytic medicine and gas therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Polymers , Pyrroles , Nitric Oxide , Phototherapy , Hyperthermia, Induced/methods , Hydrogen Peroxide , Glutathione Disulfide , Catalysis , Cell Line, Tumor
3.
Biomaterials ; 284: 121503, 2022 05.
Article in English | MEDLINE | ID: mdl-35367841

ABSTRACT

Tumor cells reprogram the metabolic pathways to acquire abundant nutrients and sustain malignant proliferation. This fierce metabolic competition in tumor ecosystem has been uncovered to be associated with tumor microenvironmental immunosuppression. Here we develop an adenosine triphosphate (ATP)-exhausted nanocomplex (IR@ZIF-RGD) to intervene in tumor energy metabolism and regulate tumor immune microenvironment. IR@ZIF-RGD could effectively deplete intracellular ATP and inhibit ATP synthesis by ATP-responsive ZIF-90 and siRNA targeting thioredoxin reductase-2, respectively, thus leading to tumor metabolism disorders and immunosuppressive reversion. Meanwhile, IR@ZIF-RGD induced oxidative stress and ICG triggered photothermal therapy could provoke potent immunogenic cell death to enhance antitumor immunogenicity. Such a photo-immunometabolic nanocomplex has been demonstrated to be an efficient vaccine to elicit protective anticancer immune response in vivo, achieving suppressed growth of both primary and abscopal tumors, as well as inhibited tumor metastasis.


Subject(s)
Adenosine Triphosphate , Ecosystem , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Immunotherapy , Oligopeptides/pharmacology , Tumor Microenvironment
4.
Bioact Mater ; 10: 515-525, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34901564

ABSTRACT

The imbalance between oxidants and antioxidants in cancer cells would evoke oxidative stress-induced cell death, which has been demonstrated to be highly effective in treating malignant tumors. Sonodynamic therapy (SDT) adopts ultrasound (US) as the excitation source to induce the production of reactive oxygen species (ROS), which emerges as a noninvasive therapeutic strategy with deep tissue penetration depth and high clinical safety. Herein, we construct novel sonoactivated oxidative stress amplification nanoplatforms by coating MnO2 on Au nanoparticle-anchored black phosphorus nanosheets and decorating soybean phospholipid subsequently (Au/BP@MS). The Au/BP@MS exhibit increased ROS generation efficiency under US irradiation in tumor tissues due to Au/BP nanosensitizer-induced improvement of electron-hole separation as well as MnO2-mediated O2 generation and GSH depletion, thus leading to notable inhibition effect on tumor growth. Moreover, tumor microenvironment-responsive biodegradability of Au/BP@MS endows them with enhanced magnetic resonance imaging guidance and clinical potential for cancer theranostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...