Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1120092, 2023.
Article in English | MEDLINE | ID: mdl-37007052

ABSTRACT

NanoSIMS has been widely used for in-situ sulfur isotopic analysis (32S and 34S) of micron-sized grains or complex zoning in sulfide in terrestrial and extraterrestrial samples. However, the conventional spot mode analysis is restricted by depth effects at the spatial resolution < 0.5-1 µm. Thus sufficient signal amount cannot be achieved due to limited analytical depths, resulting in low analytical precision (1.5‰). Here we report a new method that simultaneously improves spatial resolution and precision of sulfur isotopic analysis based on the NanoSIMS imaging mode. This method uses a long acquisition time (e.g., 3 h) for each analytical area to obtain sufficient signal amount, rastered with the Cs+ primary beam of ∼100 nm in diameter. Due to the high acquisition time, primary ion beam (FCP) intensity drifting and quasi-simultaneous arrival (QSA) significantly affects the sulfur isotopic measurement of secondary ion images. Therefore, the interpolation correction was used to eliminate the effect of FCP intensity variation, and the coefficients for the QSA correction were determined with sulfide isotopic standards. Then, the sulfur isotopic composition was acquired by the segmentation and calculation of the calibrated isotopic images. The optimal spatial resolution of ∼ 100 nm (Sampling volume of 5 nm × 1.5 µm2) for sulfur isotopic analysis can be implemented with an analytical precision of ∼1‰ (1SD). Our study demonstrates that imaging analysis is superior to spot-mode analysis in irregular analytical areas where relatively high spatial resolution and precision are required and may be widely applied to other isotopic analyses.

2.
Environ Microbiol ; 23(2): 893-907, 2021 02.
Article in English | MEDLINE | ID: mdl-32783346

ABSTRACT

Fungal-mineral interactions can produce large amounts of biogenic nano-size (~ 1-100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal-mineral cultivation exhibit intrinsic peroxidase-like activity. Specifically, the average peroxidase-like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X-ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non-lattice oxygen, through occupying surface oxygen-vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox-active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 µm) oxygen-film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation-based micro-FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal-mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.


Subject(s)
Bacterial Proteins/metabolism , Ferrosoferric Oxide/metabolism , Hypocreales/growth & development , Hypocreales/metabolism , Peroxidases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ecosystem , Ferrosoferric Oxide/chemistry , Hypocreales/chemistry , Hypocreales/genetics , Magnetite Nanoparticles/chemistry , Minerals/chemistry , Oxidation-Reduction , Peroxidases/chemistry , Peroxidases/genetics , Spectroscopy, Fourier Transform Infrared
3.
Plant Sci ; 238: 286-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26259195

ABSTRACT

Recretohalophytes with specialized salt-secreting structures (salt glands) can secrete excess salts from plant, while discriminating between Na(+) and K(+). K(+)/Na(+) ratio plays an important role in plant salt tolerance, but the distribution and role of K(+) in the salt gland cells is poorly understood. In this article, the in situ subcellular localization of K and Na in the salt gland of the recretohalophyte Limonium bicolor Kuntze is described. Samples were prepared by high-pressure freezing (HPF), freeze substitution (FS) and analyzed using NanoSIMS. The salt gland of L. bicolor consists of sixteen cells. Higher signal strength of Na(+) was located in the apoplast of salt gland cells. Compared with control, 200 mM NaCl treatment led to higher signal strength of K(+) and Na(+) in both cytoplasm and nucleus of salt gland cells although K(+)/Na(+) ratio in both cytoplasm and nucleus were slightly reduced by NaCl. Moreover, the rate of Na(+) secretion per salt gland of L. bicolor treated with 200 mM NaCl was five times that of controls. These results suggest that K(+) accumulation both in the cytoplasm and nucleus of salt gland cells under salinity may play an important role in salt secretion, although the exact mechanism is unknown.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Nanotechnology , Plumbaginaceae/anatomy & histology , Plumbaginaceae/metabolism , Potassium/metabolism , Sodium Chloride/pharmacology , Spectrometry, Mass, Secondary Ion/methods , Cell Nucleus/drug effects , Cytoplasm/drug effects , Ions , Plant Leaves/drug effects , Plant Leaves/metabolism , Plumbaginaceae/cytology , Plumbaginaceae/ultrastructure , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...