Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 368: 130853, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34425337

ABSTRACT

Konjac glucomannan (KGM) is used as an additive to improve the properties of wheat products. The effects of three types of KGM on the rheological properties and microstructure of dough, as well as the performance of steamed bread were investigated in this study. Particularly, dough with KGM displayed new features such as reduced peak viscosity, breakdown and setback. As the viscosity of KGM increased, the stability of the dough structure increased, while the viscosity and fluidity of the dough decreased. More interestingly, the gluten film of dough also increased with increasing substitution level and viscosity of KGM. Consistently, KGM with higher viscosity improved the quality of steamed bread. Generally, three types of KGM have different effects on the rheological characteristics and microstructure of dough, as well as the performance of steamed bread, which provide useful information for the proper application of KGM in wheat-based foods.


Subject(s)
Bread , Mannans , Glutens , Rheology , Viscosity
2.
Toxicol Lett ; 330: 167-175, 2020 May 23.
Article in English | MEDLINE | ID: mdl-32454083

ABSTRACT

Ochratoxin A (OTA), a feed mycotoxin, tends to impair the reproductive performance of animals. Our previous studies have demonstrated that OTA exposure inhibits porcine ovarian granulosa cell (GC) proliferation and induces their apoptosis, but the underlying toxic mechanism is still uncertain. In this study, we explored the OTA exposure on porcine GCs in vitro and found that OTA exposure inhibited the proliferation of porcine GCs and arrested cell cycle of GCs in the G2/M phase. The results based on RNA-Seq revealed that 20 µM and 40 µM OTA exposure increase DNA damage of porcine GCs in vitro. The differentially expressed genes (DEGs) of 40 µM OTA exposure were enriched in the pathways of mismatch repair, nucleotide excision repair and homologous recombination in DNA replication compared with control group and 20 µM OTA exposure group. Meanwhile, OTA exposure increased the expression levels of DNA double-strand breaks (DSBs) gene γ-H2AX, and DNA repair related genes, such as BRCA1, XRCC1, PARP1, and RAD51. Above all, our research revealed that OTA might exert deleterious effects on porcine ovarian GCs, influencing DNA repair-related biological processes and causing DNA damage response.

SELECTION OF CITATIONS
SEARCH DETAIL
...