Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Hortic Res ; 10(5): uhad054, 2023 May.
Article in English | MEDLINE | ID: mdl-37213687

ABSTRACT

A variety of endogenous hormone signals, developmental cues, and environmental stressors can trigger and promote leaf lettuce bolting. One such factor is gibberellin (GA), which has been linked to bolting. However, the signaling pathways and the mechanisms that regulate the process have not been discussed in full detail. To clarify the potential role of GAs in leaf lettuce, significant enrichment of GA pathway genes was found by RNA-seq, among which the LsRGL1 gene was considered significant. Upon overexpression of LsRGL1, a noticeable inhibition of leaf lettuce bolting was observed, whereas its knockdown by RNA interference led to an increase in bolting. In situ hybridization analysis indicated a significant accumulation of LsRGL1 in the stem tip cells of overexpressing plants. Leaf lettuce plants stably expressing LsRGL1 were examined concerning differentially expressed genes through RNA-seq analysis, and the data indicated enhanced enrichment of these genes in the 'plant hormone signal transduction' and 'phenylpropanoid biosynthesis' pathways. Additionally, significant changes in LsWRKY70 gene expression were identified in COG (Clusters of Orthologous Groups) functional classification. The results of yeast one-hybrid, ß-glucuronidase (GUS), and biolayer interferometry (BLI) experiments showed that LsRGL1 proteins directly bind to the LsWRKY70 promoter. Silencing LsWRKY70 by virus-induced gene silencing (VIGS) can delay bolting, regulate the expression of endogenous hormones, abscisic acid (ABA)-linked genes, and flowering genes, and improve the nutritional quality of leaf lettuce. These results strongly associate the positive regulation of bolting with LsWRKY70 by identifying its vital functions in the GA-mediated signaling pathway. The data obtained in this research are invaluable for further experiments concerning the development and growth of leaf lettuce.

2.
Antioxidants (Basel) ; 11(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36552540

ABSTRACT

Lettuce is sensitive to high temperature, and exogenous spermidine can improve heat tolerance in lettuce, but its intrinsic mechanism is still unclear. We analyzed the effects of exogenous spermidine on the leaf physiological metabolism, transcriptome and metabolome of lettuce seedlings under high-temperature stress using the heat-sensitive lettuce variety 'Beisansheng No. 3' as the material. The results showed that exogenous spermidine increased the total fresh weight, total dry weight, root length, chlorophyll content and total flavonoid content, increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and decreased malondialdehyde (MDA) content in lettuce under high temperature stress. Transcriptome and metabolome analyses revealed 818 differentially expressed genes (DEGs) and 393 metabolites between water spray and spermidine spray treatments under high temperature stress, and 75 genes from 13 transcription factors (TF) families were included in the DEGs. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of DEG contains pathways for plant-pathogen interactions, photosynthesis-antennal proteins, mitogen-activated protein kinase (MAPK) signaling pathway and flavonoid biosynthesis. A total of 19 genes related to flavonoid synthesis were detected. Most of these 19 DEGs were down-regulated under high temperature stress and up-regulated after spermidine application, which may be responsible for the increase in total flavonoid content. We provide a possible source and conjecture for exploring the mechanism of exogenous spermidine-mediated heat tolerance in lettuce.

3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362292

ABSTRACT

Warm temperatures induce plant bolting accompanied by flower initiation, where endogenous auxin is dynamically associated with accelerated growth. Auxin signaling is primarily regulated by a family of plant-specific transcription factors, AUXIN RESPONSE FACTORS (ARFs), which either activate or repress the expression of downstream genes in response to developmental and environmental cues. However, the relationship between ARFs and bolting has not been completely understood in lettuce yet. Here, we identified 24 LsARFs (Lactuca sativa ARFs) in the lettuce genome. The phylogenetic tree indicated that LsARFs could be classified into three clusters, which was well supported by the analysis of exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis revealed that more than half of the LsARFs were ubiquitously expressed in all tissues examined, whereas a small number of LsARFs responded to UV or cadmium stresses. qRT-PCR analysis indicated that the expression of most LsARFs could be activated by more than one phytohormone, underling their key roles as integrative hubs of different phytohormone signaling pathways. Importantly, the majority of LsARFs displayed altered expression profiles under warm temperatures, implying that their functions were tightly associated with thermally accelerated bolting in lettuce. Importantly, we demonstrated that silencing of LsARF8a, expression of which was significantly increased by elevated temperatures, resulted in delayed bolting under warm temperatures, suggesting that LsARF8a might conduce to the thermally induced bolting. Together, our results provide molecular insights into the LsARF gene family in lettuce, which will facilitate the genetic improvement of the lettuce in an era of global warming.


Subject(s)
Indoleacetic Acids , Lactuca , Lactuca/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
4.
Plant Physiol Biochem ; 192: 162-171, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36242907

ABSTRACT

Lettuce is a common vegetable in hydroponic production. In this paper, a selenium (Se)-biofortification method was provided. The Se content, speciation, and the effects of different concentrations of selenate and selenite on lettuce growth and amino acids were investigated. The results showed that lettuce had strong ability to accumulate exogenous selenium, and inorganic Se could be effectively converted into organic Se. The proportion of organic Se in the shoots under treatment with 4 µmol L-1 selenite was 100%. Selenomethionine was the main organic Se, accounting for 51% (selenate) and 90% (selenite) of the total Se. Adding Se improves photosynthesis of lettuce and promotes growth. The growth with 2 µmol L-1 selenate and 4 µmol L-1 selenite was better than CK, and the shoot fresh weight was increased by 143.22% and 166.98%, respectively. Furthermore, the optimum Se application is 2 µmol L-1, and some areas can apply 4 µmol L-1 selenite. But Se-excessive areas are not recommended to grow selenium-rich foods. Therefore, lettuce has strong biofortification potential.

5.
Front Plant Sci ; 13: 958833, 2022.
Article in English | MEDLINE | ID: mdl-36160965

ABSTRACT

Lettuce (Lactuca sativa L.) is a leafy vegetable whose edible organs usually are leaf or stems, and thus high-temperature induced bolting followed by flower initiation is an undesirable trait in lettuce production. However, the molecular mechanism that controls lettuce bolting and flowering upon thermal treatments is largely unknown. Here, we identified a Lettuce auxin response factor 3 (LsARF3), the expression of which was enhanced by heat and auxin treatments. Interestingly, LsARF3 is preferentially expressed in stem apex, suggesting it might be associated with lettuce bolting. Transgenic lettuce overexpressing LsARF3 displayed early bolting and flowering, whereas knockout of LsARF3 dramatically delayed bolting and flowering in lettuce under normal or high temperature conditions. Furthermore, Exogenous application of IAA failed to rescue the late-bolting and -flowering phenotype of lsarf3 mutants. Several floral integrator genes including LsCO, LsFT, and LsLFY were co-expressed with LsARF3 in the overexpression and knockout lettuce plants. Yeast one-hybrid (Y1H) experiments suggested that LsARF3 could physically interact with the LsCO promoter, which was further confirmed by a dual luciferase assay in tobacco leaves. The results indicated that LsARF3 might directly modulate the expression of LsCO in lettuce. Therefore, these results demonstrate that LsARF3 could promote lettuce bolting in response to the high temperature by directly or indirectly activating the expression of floral genes such as LsCO, which provides new insights into lettuce bolting in the context of ARFs signaling and heat response.

6.
BMC Genomics ; 23(1): 580, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35953780

ABSTRACT

BACKGROUND: High temperature induces early bolting in lettuce (Lactuca sativa L.), which affects both quality and production. However, the molecular mechanism underlying high temperature-induced bolting is still limited. RESULTS: We performed systematical analysis of morphology, transcriptome, miRNAs and methylome in lettuce under high temperature treatment. Through a comparison of RNA-Seq data between the control and the high temperature treated lettuces at different time points totally identified 2944 up-regulated genes and 2203 down-regulated genes, which cover three floral pathways including photoperiod, age and gibberellin (GA) pathways. Genome wide analysis of miRNAs and methylome during high temperature treatment indicated miRNAs and DNA methylation might play a role controlling gene expression during high temperature-induced bolting. miRNA targets included some protein kinase family proteins, which potentially play crucial roles in this process. CONCLUSIONS: Together, our results propose a possible regulation network involved in high temperature-induced bolting.


Subject(s)
Lactuca , MicroRNAs , Flowers/genetics , Gene Expression Regulation, Plant , Lactuca/genetics , Lactuca/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Temperature
7.
Front Plant Sci ; 13: 921021, 2022.
Article in English | MEDLINE | ID: mdl-35837450

ABSTRACT

High temperature is one of the primary environmental stress factors affecting the bolting of leaf lettuce. To determine the potential role of melatonin in regulating high-temperature induced bolting in leaf lettuce (Lactuca sativa L.), we conducted melatonin treatment of the bolting-sensitive cultivar "S39." The results showed that 100 µmol L-1 melatonin treatment significantly promoted growth, and melatonin treatment delayed high-temperature-induced bolting in lettuce. RNA-seq analysis revealed that the differentially expressed genes (DEGs) involved in "plant hormone signal transduction" and "phenylpropanoid biosynthesis" were significantly enriched during high-temperature and melatonin treatment. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis suggested that the expression patterns of abscisic acid (ABA)-related genes positively correlated with stem length during leaf lettuce development. Furthermore, weighted gene co-expression network analysis (WGCNA) demonstrated that MYB15 may play an important role in melatonin-induced resistance to high temperatures. Silencing the LsMYB15 gene in leaf lettuce resulted in early bolting, and exogenous melatonin delayed early bolting in leaf lettuce at high temperatures. Our study provides valuable data for future studies of leaf lettuce quality.

8.
Open Life Sci ; 17(1): 438-446, 2022.
Article in English | MEDLINE | ID: mdl-35582624

ABSTRACT

Plant bolting is regulated and controlled by various internal and external factors. We aimed to provide an improved method for breeding to determine whether there is a synergism between hormones and to explore the regulatory effect of plant hormones on the bolting of leaf lettuce. Lettuce plants were sprayed with exogenous auxin and gibberellin separately or in combination. The specific bolting period was determined by the change in stem length and cytological observation. The dynamic changes in endogenous hormones and genes closely related to bolting were analyzed. Treatment with gibberellin alone and the combined application of auxin and gibberellin induced bolting on the fourth day, and treatment with auxin alone resulted in bolting on the eighth day. In the early bolting stage, the auxin contents in the stems of the treatment groups, especially the combined gibberellin and auxin group, were higher than those of the control group. After the application of exogenous auxin and gibberellin, we found that the expression of the ARF8 and GID1 genes was upregulated. Based on the results of our study, combined treatment with exogenous gibberellin and auxin was the best method to promote the bolting of leaf lettuce, and the ARF8 and GID1 genes are closely related to this process.

9.
Plants (Basel) ; 11(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35631810

ABSTRACT

High temperature is a huge threat to lettuce production in the world, and spermidine (Spd) has been shown to improve heat tolerance in lettuce, but the action mechanism of Spd and the role of polyamine metabolism are still unclear. The effects of Spd and D-arginine (D-arg) on hydroponic lettuce seedlings under high-temperature stress by foliar spraying of Spd and D-arg were investigated. The results showed that high-temperature stress significantly inhibited the growth of lettuce seedlings, with a 33% decrease in total fresh weight and total dry weight; photosynthesis of lettuce seedlings was inhibited by high-temperature stress, and the inhibition was greater in the D-arg treatment, while the Spd recovery treatment increased net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), stomatal limit value (Ls), and intercellular CO2 concentration (Ci). High-temperature stress significantly reduced the maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP), electron transport rate (ETR), and photochemical efficiency of PSII (ΦPSII), increased the non-photochemical burst coefficient (NPQ) and reduced the use of light energy, which was alleviated by exogenous Spd. The increase in polyamine content may be due to an increase in polyamine synthase activity and a decrease in polyamine oxidase activity, as evidenced by changes in the expression levels of genes related to polyamine synthesis and metabolism enzymes. This evidence suggested that D-arg suppressed endogenous polyamine levels in lettuce and reduced its tolerance, whereas exogenous Spd promoted the synthesis and accumulation of polyamines in lettuce and increased its photosynthetic and oxidative stress levels, which had an impact on the tolerance of lettuce seedlings.

10.
BMC Genomics ; 22(1): 427, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107883

ABSTRACT

BACKGROUND: Lettuce (Lactuca sativa L.), one of the most economically important leaf vegetables, exhibits early bolting under high-temperature conditions. Early bolting leads to loss of commodity value and edibility, leading to considerable loss and waste of resources. However, the initiation and molecular mechanism underlying early bolting induced by high temperature remain largely elusive. RESULTS: In order to better understand this phenomenon, we defined the lettuce bolting starting period, and the high temperature (33 °C) and controlled temperature (20 °C) induced bolting starting phase of proteomics is analyzed, based on the iTRAQ-based proteomics, phenotypic measurement, and biological validation by RT-qPCR. Morphological and microscopic observation showed that the initiation of bolting occurred 8 days after high-temperature treatment. Fructose accumulated rapidly after high-temperature treatment. During initiation of bolting, of the 3305 identified proteins, a total of 93 proteins exhibited differential abundances, 38 of which were upregulated and 55 downregulated. Approximately 38% of the proteins were involved in metabolic pathways and were clustered mainly in energy metabolism and protein synthesis. Furthermore, some proteins involved in sugar synthesis were differentially expressed and were also associated with energy production. CONCLUSIONS: This report is the first to report on the metabolic changes involved in the initiation of bolting in lettuce. Our study suggested that energy metabolism and ribosomal proteins are pivotal components during initiation of bolting. This study could provide a potential regulatory mechanism for the initiation of early bolting by high temperature, which could have applications in the manipulation of lettuce for breeding.


Subject(s)
Lactuca , Proteomics , Energy Metabolism , Lactuca/genetics , Plant Breeding , Protein Biosynthesis , Temperature
11.
Plant Signal Behav ; 16(7): 1913845, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33955335

ABSTRACT

To determine the effect of the serine/threonine protein kinase (STPK) gene on leaf lettuce bolting, we utilized virus-induced gene silencing (VIGS) using the TRV vector to silence the target gene. The 'GB30' leaf lettuce cultivar was the test material, and the methods included gene cloning, bioinformatics analysis, quantitative real-time PCR (qRT-PCR) and VIGS. LsSTPK, was cloned from the 'GB30' leaf lettuce cultivar via reverse transcription-polymerase chain reaction (RT-PCR). qRT-PCR analysis showed that the expression of LsSTPK in the stem of leaf lettuce was significantly greater than that in the roots and leaves, and after high-temperature treatment, the gene expression in the stems in the experimental group was markedly lower than that in the control groups. Following LsSTPK silencing via the VIGS method, the stem length in the treatment group was significantly greater than that in the blank and negative control groups, and the contents of auxin (IAA), GA3 and abscisic acid (ABA) in the treatment group were greater than those in the other two groups. Flower bud differentiation occurred in the treatment group but not in the control group. The above findings suggested that LsSTPK inhibits the bolting of leaf lettuce under high-temperature conditions.


Subject(s)
Gene Silencing , Lactuca/growth & development , Plant Viruses/genetics , Protein Serine-Threonine Kinases/genetics , Cloning, Molecular , Genes, Plant , Genetic Vectors , Hot Temperature , Lactuca/enzymology , Lactuca/genetics , Lactuca/virology , Protein Serine-Threonine Kinases/physiology , Real-Time Polymerase Chain Reaction
12.
PLoS One ; 15(12): e0244198, 2020.
Article in English | MEDLINE | ID: mdl-33373388

ABSTRACT

High temperatures induce early bolting in lettuce (Lactuca sativa L.), which decreases both quality and production. However, knowledge of the molecular mechanism underlying high temperature promotes premature bolting is lacking. In this study, we compared lettuce during the bolting period induced by high temperatures (33/25 °C, day/night) to which raised under controlled temperatures (20/13 °C, day/night) using iTRAQ-based phosphoproteomic analysis. A total of 3,814 phosphorylation sites located on 1,766 phosphopeptides from 987 phosphoproteins were identified after high-temperature treatment,among which 217 phosphoproteins significantly changed their expression abundance (116 upregulated and 101 downregulated). Most phosphoproteins for which the abundance was altered were associated with the metabolic process, with the main molecular functions were catalytic activity and transporter activity. Regarding the functional pathway, starch and sucrose metabolism was the mainly enriched signaling pathways. Hence, high temperature influenced phosphoprotein activity, especially that associated with starch and sucrose metabolism. We suspected that the lettuce shorten its growth cycle and reduce vegetative growth owing to changes in the contents of starch and soluble sugar after high temperature stress, which then led to early bolting/flowering. These findings improve our understanding of the regulatory molecular mechanisms involved in lettuce bolting.


Subject(s)
Heat-Shock Response , Lactuca/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , Starch/metabolism , Sucrose/metabolism , Lactuca/growth & development , Phosphoproteins/genetics , Proteome/genetics
13.
Plant Signal Behav ; 15(12): 1824697, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32985921

ABSTRACT

In this research, the lettuce high-temperature-sensitive variety Beisan San 3 was used as a test material. The effects of exogenous spermidine (Spd) on membrane lipid peroxidation, the antioxidant system, the ascorbic acid-glutathione (AsA-GSH) system and the glyoxalase (Glo) system in lettuce seedlings under high-temperature stress were studied by spraying either 1 mM spermidine or ionized water as a control. The results showed that, under high-temperature stress, the growth of lettuce seedlings was weak, and the dry weight (DW) and fresh weight (FW) were reduced by 68.9% and 82%, respectively, compared with those of the normal-temperature controls. In addition, the degree of membrane lipid peroxidation increased, and the reactive oxygen species (ROS) level increased, both of which led to a significant increase in malondialdehyde (MDA) content and lipoxygenase (LOX) activity. Under high-temperature stress, the activity of superoxide dismutase (SOD) decreased, the activities of peroxidase (POD) and catalase (CAT) increased first but then decreased, and the activity of ascorbic acid peroxidase (APX) decreased first but then increased. Glutathione reductase (GR) activity, ascorbic acid (AsA) and glutathione (GSH) content showed an upward trend under high-temperature stress. The activities of glyoxalase (GloI and GloII) in the lettuce seedling leaves increased significantly under high-temperature stress. In contrast, the application of exogenous Spd alleviated the oxidative damage to the lettuce seedlings, which showed a decrease in MDA content and LOX activity and an increase in SOD, POD, CAT, APX, GR, GloI, and GloII activities. In addition, the antioxidant AsA and GSH contents also increased to varying degrees. It can be seen from the results that high temperature stress leads to an increase in the level of ROS and cause peroxidation in lettuce seedlings, and exogenous Spd can enhance the ability of lettuce seedlings to withstand high temperature by enhancing the antioxidant system, glyoxalase system and AsA-GSH cycle system.


Subject(s)
Antioxidants/pharmacology , Hot Temperature , Lactoylglutathione Lyase/metabolism , Lactuca/enzymology , Seedlings/enzymology , Spermidine/pharmacology , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Lactuca/drug effects , Lactuca/growth & development , Lipoxygenase/metabolism , Malondialdehyde/metabolism , Membrane Lipids/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Seedlings/drug effects , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism
14.
Protoplasma ; 257(3): 979-992, 2020 May.
Article in English | MEDLINE | ID: mdl-32043172

ABSTRACT

ARFs in plants mediate auxin signaling transduction and regulate growth process. To determine genome-wide characterization of ARFs family in melon (Cucumis melo L.), ARFs were identified via analysis of information within the melon genomic database, and bioinformatic analyses were performed using various types of software. Based on different treatment methods involving dipping with the growth regulator Fengchanji No. 2 and artificial pollination, Jingmi No. 11 melon was used as the test material, and melon plants with unpollinated ovaries served as controls. The expression of ARFs during the early development of melon was analyzed via qRT-PCR. Seventeen genes that encode ARF proteins were identified in the melon genome for the first time. The expression of these ARFs differed in different tissues. The expression levels of CmARF2, CmARF16-like, CmARF18-like2, and CmARF19-like were especially high in melon fruits. The expression of ARFs during the early development of melon fruits differed in response to the different treatments, which suggested that CmARF9, CmARF16-like, CmARF19-like, CmARF19, CmARF1, CmARF2, CmARF3, and CmARF5 may be associated with melon fruit growth during early development. Interestingly, the increase in the transverse diameter of fruits treated with growth regulators was significantly greater than that of fruits resulting from artificial pollination, while the increase in the longitudinal diameter of the fruits resulting from artificial pollination was significantly greater.


Subject(s)
Cucumis melo/chemistry , Fruit/growth & development , Gene Expression Regulation, Plant/genetics , Indoleacetic Acids/metabolism
15.
Int J Mol Sci ; 19(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30274198

ABSTRACT

Bolting is a key process in the growth and development of lettuce (Lactuca sativa L.). A high temperature can induce early bolting, which decreases both the quality and production of lettuce. However, knowledge of underlying lettuce bolting is still lacking. To better understand the molecular basis of bolting, a comparative proteomics analysis was conducted on lettuce stems, during the bolting period induced by a high temperature (33 °C) and a control temperature (20 °C) using iTRAQ-based proteomics, phenotypic measures, and biological verifications using qRT-PCR and Western blot. The high temperature induced lettuce bolting, while the control temperature did not. Of the 5454 identified proteins, 619 proteins presented differential abundance induced by high-temperature relative to the control group, of which 345 had an increased abundance and 274 had a decreased abundance. Proteins with an abundance level change were mainly enriched in pathways associated with photosynthesis and tryptophan metabolism involved in auxin (IAA) biosynthesis. Moreover, among the proteins with differential abundance, proteins associated with photosynthesis and tryptophan metabolism were increased. These findings indicate that a high temperature enhances the function of photosynthesis and IAA biosynthesis to promote the process of bolting, which is in line with the physiology and transcription level of IAA metabolism. Our data provide a first comprehensive dataset for gaining novel understanding of the molecular basis underlying lettuce bolting induced by high temperature. It is potentially important for further functional analysis and genetic manipulation for molecular breeding to breed new cultivars of lettuce to restrain early bolting, which is vital for improving vegetable quality.


Subject(s)
Hot Temperature , Indoleacetic Acids/metabolism , Lactuca/metabolism , Lactuca/physiology , Photosynthesis , Proteomics/methods , Cluster Analysis , Flowers/physiology , Gene Expression Regulation, Plant , Gene Ontology , Isotope Labeling , Lactuca/anatomy & histology , Lactuca/genetics , Metabolic Networks and Pathways , Plant Proteins/metabolism , Plant Stems/anatomy & histology , Plant Stems/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Int J Mol Sci ; 19(4)2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29641499

ABSTRACT

The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce (Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Lactuca/chemistry , Plant Extracts/pharmacology , Anthocyanins/analysis , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , HT29 Cells , Hep G2 Cells , Humans , Lactuca/metabolism , Plant Extracts/chemistry , Polyphenols/analysis
17.
PLoS One ; 11(8): e0160909, 2016.
Article in English | MEDLINE | ID: mdl-27501301

ABSTRACT

Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport.


Subject(s)
Cold Temperature , Cucurbitaceae/metabolism , Fruit/metabolism , Oligosaccharides/metabolism , Phloem/metabolism , Raffinose/metabolism , Stress, Physiological , Cucurbitaceae/ultrastructure , Fruit/ultrastructure , Microscopy, Electron , Phloem/ultrastructure
18.
Ying Yong Sheng Tai Xue Bao ; 23(3): 717-23, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22720616

ABSTRACT

To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results suggested that applying exogenous SA could alleviate the oxidation damage of cell membrane resulted from the drought-caused membrane lipid peroxidation, improve the Pn by increasing PS II activity to benefit water utilization, enhance the regulation capability of osmosis to decrease water loss and increase water use efficiency, and thereby, improve the plant drought-resistance.


Subject(s)
Cucumis sativus/physiology , Droughts , Lipid Peroxidation/drug effects , Photosynthesis/physiology , Salicylic Acid/pharmacology , Cucumis sativus/metabolism , Membrane Lipids/metabolism , Seedlings/metabolism , Seedlings/physiology , Stress, Physiological/drug effects
19.
Int J Biol Sci ; 7(8): 1161-70, 2011.
Article in English | MEDLINE | ID: mdl-22043173

ABSTRACT

The most important quality for muskmelon (Cucumis melo L.) is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effects of grafting muskmelon on two different inter-specific (Cucurbita maxima×C. moschata) rootstocks was investigated with respect to photosynthesis and carbohydrate metabolism. Grafting Zhongmi1 muskmelon on RibenStrong (GR) or Shengzhen1 (GS) rootstocks increased chlorophyll a, chlorophyll b and chlorophyll a+b content and the leaf area in middle and late developmental stages of the plant compared to the ungrafted Zhongmi1 check (CK). Grafting enhanced the net photosynthesis rate, the stomatal conductance, concentration of intercellular CO(2) and transpiration rate. Grafting influenced carbohydrates contents by changing carbohydrate metabolic enzymes activities which was observed as an increase in acid invertase and neutral invertase activity in the functional leaves during the early and middle developmental stages compared to CK. Grafting improved sucrose phosphate synthase and stachyose synthase activities in middle and late developmental stages, thus translocation of sugars (such as sucrose, raffinose and stachyose) in GR and GS leaves were significantly enhanced. However, compared with CK, translocation of more sugars in grafted plants did not exert feedback inhibition on photosynthesis. Our results indicate that grafting muskmelon on inter-specific rootstocks enhances photosynthesis and translocation of sugars in muskmelon leaves.


Subject(s)
Agriculture/methods , Breeding/methods , Carbohydrate Metabolism/physiology , Cucumis melo/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Plant Roots/physiology , Chlorophyll/metabolism , Galactosyltransferases/metabolism , Glucosyltransferases/metabolism , Species Specificity , beta-Fructofuranosidase/metabolism
20.
J Tradit Chin Med ; 22(2): 87-92, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12125500

ABSTRACT

31 cases of atherosclerosis (AS) were treated with Jiang Zhi Tong Mai Fang ([symbol: see text], formula of JZTMF), and its effect was compared with 30 cases treated with lovastatin in the control group. Clinically, the JZTMF formula showed an effect of regulating blood lipids, and therefore it was antiatherosclerotic. The mechanism is, probably, restoration of the function of endothelial cells (EC) by increasing the synthesis of 6-keto-PGF1 alpha and decreasing the release of endothelin (ET) as evidenced in the experimental study.


Subject(s)
Arteriosclerosis/drug therapy , Drugs, Chinese Herbal/therapeutic use , Endothelium, Vascular/metabolism , Phytotherapy , 6-Ketoprostaglandin F1 alpha/blood , Animals , Arteriosclerosis/blood , Cholesterol, LDL/blood , Drug Combinations , Endothelins/blood , Female , Humans , Lovastatin/therapeutic use , Male , Middle Aged , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...