Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 41(21): 2945-2957, 2022 05.
Article in English | MEDLINE | ID: mdl-35437307

ABSTRACT

PLK1 and Smad4 are two important factors in prostate cancer initiation and progression. They have been reported to play the opposite role in Pten-deleted mice, one is an oncogene, the other is a tumor suppressor. Moreover, they could reversely regulate the PI3K/AKT/mTOR pathway and the activation of MYC. However, the connections between PLK1 and Smad4 have never been studied. Here, we showed that PLK1 could interact with Smad4 and promote the ubiquitination and degradation of Smad4 in PCa cells. PLK1 and PELO could bind to different domains of Smad4 and formed a protein complex. PELO facilitated the degradation of Smad4 through cooperating with PLK1, thereby resulting in proliferation and metastasis of prostate cancer cell. Changes in protein levels of Smad4 led to the alteration of biological function that caused by PLK1 in prostate cancer cells. Further studies showed that PELO upregulation was positively associated with high grade PCa and knockdown of PELO expression significantly decreased PCa cell proliferation and metastasis in vitro and vivo. PELO knockdown in PCa cells could enhance the tumor suppressive role of PLK1 inhibitor. In addition, blocking the interaction between PELO and Smad4 by using specific peptide could effectively inhibit PCa cell metastasis ability in vitro and vivo. Overall, these findings identified a novel regulatory relationship among PLK1, Smad4 and PELO, and provided a potential therapeutic strategy for advanced PCa therapy by co-targeting PLK1 and PELO.


Subject(s)
Cell Cycle Proteins , Endonucleases , Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Endonucleases/genetics , Endonucleases/metabolism , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Ubiquitination
2.
Front Oncol ; 11: 754206, 2021.
Article in English | MEDLINE | ID: mdl-34858826

ABSTRACT

Aberrant telomerase reverse transcriptase (TERT) expression is crucial for tumor survival and cancer cells escaping apoptosis. Multiple TERT-locus variants at 5p15 have been discovered in association with cancer risk, yet the underlying mechanisms and clinical impacts remain unclear. Here, our association studies showed that the TERT promoter variant rs2853669 confers a risk of prostate cancer (PCa) in different ethnic groups. Further functional investigation revealed that the allele-specific binding of MYC and E2F1 at TERT promoter variant rs2853669 associates with elevated level of TERT in PCa. Mechanistically, androgen stimulations promoted the binding of MYC to allele T of rs2853669, thereby activating TERT, whereas hormone deprivations enhanced E2F1 binding at allele C of rs2853669, thus upregulating TERT expression. Notably, E2F1 could cooperate with AR signaling to regulate MYC expression. Clinical data demonstrated synergistic effects of MYC/E2F1/TERT expression or with the TT and CC genotype of rs2853669 on PCa prognosis and severity. Strikingly, single-nucleotide editing assays showed that the CC genotype of rs2853669 obviously promotes epithelial-mesenchymal transition (EMT) and the development of castration-resistant PCa (CRPC), confirmed by unbiased global transcriptome profiling. Our findings thus provided compelling evidence for understanding the roles of noncoding variations coordinated with androgen signaling and oncogenic transcription factors in mis-regulating TERT expression and driving PCa.

3.
RSC Adv ; 8(60): 34192-34201, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-35548603

ABSTRACT

Chicken gallbladder has long been considered to be worthless and discarded as waste. The main composition of chicken bile is taurochenodeoxycholic acid (TCDCA), which is the isomeride of tauroursodeoxycholic acid (TUDCA). TUDCA has been effectively used for treatment of many diseases. In this paper, 7α- and 7ß-hydroxysteroid dehydrogenases (HSDH) were co-immobilised on modified chitosan microspheres, and used as recyclable biocatalyst for the catalysis of chicken bile. The catalytic reaction reached equilibrium within 4 h compared with 1 h using TCDCA as substrate. After four continuous batch reactions, the conversion of TCDCA was lower than 40% and TUDCA yield was about 15% for the catalysis of chicken bile. TUDCA yield was approximately 62% after equilibrium and the content of TUDCA in reaction product was as high as 33.16%. Furthermore, the experiments showed that activity of enzymes were significantly inhibited by bilirubin, Cu2+ and Ca2+ in complex substrate. The research described not only widens the utilization of chicken bile, but also provides a clean way for the preparation of TUDCA.

SELECTION OF CITATIONS
SEARCH DETAIL
...