Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Biomater ; 169: 410-421, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37557944

ABSTRACT

Intracellular MRSA is extremely difficult to eradicate by traditional antibiotics, leading to infection dissemination and drug resistance. A general lack of facile and long-term strategies to effectively eliminate intracellular MRSA. In this study, glabridin (GLA)-loaded pH-responsive nanoparticles (NPs) were constructed using cinnamaldehyde (CA)-dextran conjugates as carriers. These NPs targeted infected macrophages/MRSA via dextran mediation and effectively accumulated at the MRSA infection site. The NPs were then destabilized in response to the low pH of the lysosomes, which triggered the release of CA and GLA. The released CA downregulated the expression of cytotoxic pore-forming toxins, thereby decreasing the damage of macrophage and risk of the intracellular bacterial dissemination. Meanwhile, GLA could rapidly kill intracellularly entrapped MRSA with a low possibility of developing resistance. Using a specific combination of the natural antibacterial agents CA and GLA, NPs effectively eradicated intracellular MRSA with low toxicity to normal tissues in a MRSA-induced peritonitis model. This strategy presents a potential alternative for enhancing intracellular MRSA therapy, particularly for repeated and long-term clinical applications. STATEMENT OF SIGNIFICANCE: Intracellular MRSA infections are a growing threat to public health, and there is a general lack of a facile strategy for efficiently eliminating intracellular MRSA while reducing the ever-increasing drug resistance. In this study, pH-responsive and macrophage/MRSA-targeting nanoparticles were prepared by conjugating the phytochemical cinnamaldehyde to dextran to encapsulate the natural antibacterial agent glabridin. Using a combination of traditional Chinese medicine, the NPs significantly increased drug accumulation in MRSA and showed superior intracellular and extracellular bactericidal activity. Importantly, the NPs can inhibit potential intracellular bacteria dissemination and reduce the development of drug resistance, thus allowing for repeated treatment. Natural antibacterial agent-based drug delivery systems are an attractive alternative for facilitating the clinical treatment of intracellular MRSA infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Anti-Bacterial Agents/therapeutic use , Dextrans/pharmacology , Nanoparticles/therapeutic use
2.
Front Vet Sci ; 9: 885952, 2022.
Article in English | MEDLINE | ID: mdl-35937303

ABSTRACT

Antibiotic treatment of endometritis was limited by the inevitable antibiotic residues and risk of bacterial resistance. Therefore, the development of safe and effective strategies for endometritis treatment is urgently needed. Syringa oblata Lindl. (SOL) showed great pharmacological potential against endometritis. However, the active components and underlying mechanism of SOL for endometritis treatment remain indeterminate. In our study, the active components and possible molecular mechanism of SOL against endometritis were predicted through computer data mining and biological networks construction. It was predicted that the main active components of SOL were luteolin, kaempferol, oleanolic acid, and rutin, and their anti-endometritis effect was mainly attributed to the TLRs/NF-κB signaling pathway. Furthermore, a green and efficient deep eutectic solvent combined with ultrasound-assisted extraction (DES-UAE) was performed and optimized to obtain high contents of total flavonoid, rutin, and luteolin. The four predicted active components in the SOL extracts were qualitatively and quantitatively analyzed by LC/MS and HPLC. Finally, the pharmacological effects of SOL and active components have been verified by Staphylococcus aureus-endometritis models in mice. H&E staining and bacterial load in uterus tissues assays initially validated the pharmacodynamic effects of SOL, and quantitative real-time PCR (RT-qPCR) and ELISA results confirmed that SOL and four active components could ameliorate the uterus injury caused by Staphylococcus aureus, the mechanism of action is related to the TLRs/NF-κB signaling pathway.

3.
Ultrason Sonochem ; 83: 105946, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35151194

ABSTRACT

Licorice (Glycyrrhiza glabra) is extensively used owing to the superior pharmacological effects. However, its maximum application potential has not been fully exploited due to the limitation of currently available extraction solvent and methods. In this study, an eco-friendly deep eutectic solvent (NADESs) based ultrasound-assisted extraction (DES-UAE) method was applied to prepare licorice extracts. The DES-UAE using choline chloride and lactic acid as solvent was optimized and modeled by using response surface methodology to maximize the extraction yields of glabridin (GLA) and isoliquiritigenin (ISL). The optimized extracts possessed higher contents of GLA and ISL than available extraction methods, and the enriched products showed superior pharmacological activities in vitro. Furthermore, scanning electron microscopy (SEM) and molecular dynamic simulation analyses were performed to deeply investigate the interaction between solvent and targeted compounds. This study not only provides an eco-friendly method for high-efficient extraction of GLA and ISL from licorice but also illustrates the mechanism of the increased extraction efficacy, which may contribute to the application of licorice and deep insight into extraction mechanism using DES.


Subject(s)
Deep Eutectic Solvents , Glycyrrhiza , Chalcones , Isoflavones , Phenols , Plant Extracts/pharmacology , Solvents
4.
Front Microbiol ; 12: 758224, 2021.
Article in English | MEDLINE | ID: mdl-34867885

ABSTRACT

Bazhen is a classic prescription used for the prevention of qi and blood deficiency. The present study aimed to investigate the effects of dietary supplementation with modified Bazhen powder (MBP) on sows during lactation. Forty pure-bred Yorkshire sows on day 100 of gestation were randomly fed a standard diet supplemented with 20 g MBP per sow per day (MBP group) or without (control group) during -14 to 7 days relative to parturition. Results showed that the serum levels of interleukin 2 (IL-2), immunoglobulin A (IgA), and IgG were higher, whereas IL-10 level was lower in sows fed with MBP diet than in controls on day 7 postpartum. A significantly elevated proportion of serum CD4+ T cells and a slight increase in the ratio of CD4+ to CD8+ T cells in the MBP group were also observed. Furthermore, MBP supplementation improved gastrointestinal function of postpartum sows, evidenced by increased levels of motilin, gastrin, and nitric oxide. Ultra high-performance liquid chromatography combined with a quadrupole time of flight and tandem mass spectrometer identified a total of 21 absorbed milk components. 16S rRNA gene amplicon sequencing data revealed that the microbiota diversity of the colostrum and transitional milk in the MBP group was increased. At the genus level, relative abundances of Enterococcus and Anaerostipes were significantly lower in the MBP group on day 0 of lactation. Metabolomic analysis showed that 38 metabolites were upregulated, and 41 metabolites were downregulated in the transitional milk; 31 metabolites were upregulated and 8 metabolites were downregulated in the colostrum in response to MBP. Metabolic pathways, protein digestion and absorption, and biosynthesis of amino acids were enriched in the colostrum and transitional milk. Our findings provide new insights into the beneficial effects of MBP, highlighted by the changes to the microbiota and metabolomic profile of breast milk from sows fed with an MBP-supplemented diet. Thus, MBP should be considered as a potential dietary supplement for lactating sows in pork production.

5.
Front Vet Sci ; 8: 724491, 2021.
Article in English | MEDLINE | ID: mdl-34671661

ABSTRACT

Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K-Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K-Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.

SELECTION OF CITATIONS
SEARCH DETAIL