Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 21(11): 1163-1175, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37478162

ABSTRACT

Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a noncoding region. TERT promoter mutations (TPM) are biomarkers of poor prognosis in cancer, including thyroid tumors. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert-123C>T) and crossed it with thyroid-specific BrafV600E-mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all BrafV600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of BrafV600E+Tert-123C>T and BrafV600E+K5-Tert mice progressed to poorly differentiated cancers at week 20, respectively. Tert-upregulated tumors showed increased mitosis and necrosis in areas of solid growth, and older animals displayed anaplastic-like features, that is, spindle cells and macrophage infiltration. Murine TPM increased Tert transcription in vitro and in vivo, but temporal and intratumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine, and chemokine signaling, were overactivated. These models constitute useful preclinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs. IMPLICATIONS: Telomerase-driven cancer progression activates pathways that can be dissected and perhaps therapeutically exploited.


Subject(s)
Telomerase , Thyroid Neoplasms , Animals , Mice , Telomerase/genetics , Up-Regulation , Phosphatidylinositol 3-Kinases/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Mutation , Tumor Microenvironment
2.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36747657

ABSTRACT

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.

3.
Cancers (Basel) ; 14(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35053525

ABSTRACT

Hotspot mutations in the TERT (telomerase reverse transcriptase) gene are key determinants of thyroid cancer progression. TERT promoter mutations (TPM) create de novo consensus binding sites for the ETS ("E26 transformation specific") family of transcription factors. In this study, we systematically knocked down each of the 20 ETS factors expressed in thyroid tumors and screened their effects on TERT expression in seven thyroid cancer cell lines with defined TPM status. We observed that, unlike in other TPM-carrying cancers such as glioblastomas, ETS factor GABPA does not unambiguously regulate transcription from the TERT mutant promoter in thyroid specimens. In fact, multiple members of the ETS family impact TERT expression, and they typically do so in a mutation-independent manner. In addition, we observe that partial inhibition of MAPK, a central pathway in thyroid cancer transformation, is more effective at suppressing TERT transcription in the absence of TPMs. Taken together, our results show a more complex scenario of TERT regulation in thyroid cancers compared with other lineages and suggest that compensatory mechanisms by ETS and other regulators likely exist and advocate for the need for a more comprehensive understanding of the mechanisms of TERT deregulation in thyroid tumors before eventually exploring TPM-specific therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...