Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730776

ABSTRACT

As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.

2.
Adv Sci (Weinh) ; 6(18): 1900412, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31559125

ABSTRACT

The further practical applications of halide perovskite quantum dots (QDs) are blocked by problems of instability and nonradiative Auger recombination manifested as photoluminescence blinking. Here, single core/shell structured perovskite semiconductor QDs are successfully fabricated by capping CsPbBr3 QD core with CdS shell. It is demonstrated that CsPbBr3/CdS core/shell QDs exhibit ultrahigh chemical stability and nonblinking photoluminescence with high quantum yield due to the reduced electronic traps within the core/shell structure. Efficiency of amplified spontaneous emission exhibits obvious enhancement compared to that of pure CsPbBr3 QDs, originating from the mitigated competition between stimulated emission and suppressed nonradiative biexciton Auger recombination. Furthermore, low-threshold whispering-gallery-mode lasing with a high-quality factor is achieved by incorporating CsPbBr3/CdS QDs into microtubule resonators. Density functional theory (DFT)-based first-principles calculations are also performed to reveal the atomic interface structure, which supports the existence of CsPbBr3/CdS structure. An interesting feature of spatially separated charge density at CsPbBr3/CdS interface is found, which may greatly contribute to the suppressed Auger recombination. The results provide a practical approach to improve the stability and suppress the blinking of halide perovskite QDs, which may pave the way for future applications for various optoelectronic devices.

3.
J Chem Phys ; 149(2): 024702, 2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30007400

ABSTRACT

On the basis of first-principles calculations, we investigated the structural and electronic properties of the two-dimensional (2D) Au-1,3,5 triethynylbenzene (Au-TEB) framework, which has been recently synthesized by homocoupling reactions in experiments. Featured by the C-Au-C linkage, the 2D Au-TEB network has a kagome lattice by Au atoms and a hexagonal lattice by organic molecules within the same metal-organic framework (MOF), which exhibits intrinsic half-metallicity with one spin channel metallic and the other spin channel fully insulating with a large energy gap of 2.8 eV. Two branches of kagome bands are located near the Fermi level, with each branch including one flat band and two Dirac bands, which originates from the out-of-plane dxz and dyz orbitals of Au and may lead to many exotic topological quantum phases. We further studied the adsorption of F atoms, Cl atoms, and small gas molecules including O2, CO, NO2, and NH3 on the Au-TEB network, aiming to exploit its potential applications in gas sensors. Detailed analyses on adsorption geometry, energy, molecular orbital interaction, and electronic structure modification suggest the great potential of Au-TEP as a promising alternative for gas sensing. We expect these results to expand the universe of low-dimensional half-metallic MOF structures and shed new light on their practical applications in nanoelectronics/spintronics.

4.
Sci Rep ; 8(1): 2079, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391534

ABSTRACT

Recent years have witnessed a surge of research in two-dimensional (2D) nanostructures for development of new rechargeable Li/Na-ion battery systems. Herein, via first-principles calculations we demonstrate strain-engineered Li/Na adsorption and storage in 2D MoS2 as anode material, aiming to enhance the operating performance of Li/Na-ion batteries. Our results show that tensile strain greatly increases the adsorption of Li/Na atoms on MoS2, and a modest strain of 6% increases Li (Na) adsorption energy by over 70%, which originates from the strain-induced upshift of Mo d states towards Fermi level that interact strongly with Li/Na s states, in analogy with the d-band model in metal catalyst. Significant narrowing of the n-doped semiconducting gap of MoS2 suggests the improved electric conductivity that may benefit charge carrier transport. By mapping out the potential energy surfaces, we show shallow energy barriers of ion diffusion with ~0.2 eV for Li and 0.1 eV for Na. Furthermore, the strain-steered competition between chemical bonding and coulomb repulsion results in high Li/Na storage capability and relatively low average operating voltage. We believe that the fundamental principle underlying the use of strain to enhance performance of renewable ion battery is applicable to other stretchable low-dimensional nanomaterials.

5.
Small ; 13(21)2017 06.
Article in English | MEDLINE | ID: mdl-28407459

ABSTRACT

All-inorganic perovskite CsPbX3 (X = Cl, Br, I) and related materials are promising candidates for potential solar cells, light emitting diodes, and photodetectors. Here, a novel architecture made of CsPbX3 /ZnS quantum dot heterodimers synthesized via a facile solution-phase process is reported. Microscopic measurements show that CsPbX3 /ZnS heterodimer has high crystalline quality with enhanced chemical stability, as also evidenced by systematic density functional theory based first-principles calculations. Remarkably, depending on the interface structure, ZnS induces either n-type or p-type doping in CsPbX3 and both type-I and type-II heterojunctions can be achieved, leading to rich electronic properties. Photoluminescence measurement results show a strong blue-shift and decrease of recombination lifetime with increasing sulfurization, which is beneficial for charge diffusion in solar cells and photovoltaic applications. These findings are expected to shed light on further understanding and design of novel perovskite heterostructures for stable, tunable optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...