Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 221: 121552, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076108

ABSTRACT

There is clear evidence that micro- and nanoplastics are accumulating in the environment, and their increasing concern of potential harm to wildlife has been identified as a major global issue. However, identification of nanoplastics in environmental samples remains a great challenge, and thus highlighting the great need for new approach. Herein, for the first time, we show that surface enhanced Raman spectroscopy (SERS) offered a feasible approach to identify trace polystyrene (PS) nanoplastics, which is the most produced nanoplastics and also widely presented in the natural environment. We found that when PS nanoplastics were surrounded by SERS-active silver nanoparticles (AgNPs), a set of Raman spectra with chemical information could be obtained via SERS mapping. This map showed the potential PS distribution of the nanoplastics on a silicon wafer, allowing a quick and detailed analysis of the nanoplastics. Moreover, the proposed method was able to identify previously undetectable plastic particles as small as ~50 nm spiked in real water, demonstrating the power of SERS to probe nanoplastics. Our work is thus an important step in nanoplastic research, and we believe that this approach can be further developed to study the occurrence, formation, and transports of nanoplastics in the natural environment.

2.
Anal Chem ; 91(3): 1785-1790, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30588801

ABSTRACT

The contamination of micro- and nanoplastics in marine systems and freshwater is a global issue. Determination of micro- and nanoplastics in the aqueous environment is of high priority to fully assess the risk that plastic particles will pose. Although microplastics have been detected in a variety of aquatic ecosystems, the analysis of nanoplastics remains an unsolved challenge. Herein, for the first time, a Triton X-45 (TX-45)-based cloud-point extraction (CPE) was proposed to preconcentrate trace nanoplastics in environmental waters. Under the optimum extraction conditions, an enrichment factor of 500 was obtained for two types of nanoplastics with different compositions, polystyrene (PS) and poly(methyl methacrylate) (PMMA), without disturbing their original morphology and sizes. Additionally, following thermal treatment at 190 °C for 3 h, the CPE-obtained extract could be submitted to pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) analysis for mass quantification of nanoplastics. Taking 66.2 nm PS nanoplastics and 86.2 nm PMMA nanoplastics as examples, the proposed method showed excellent reproducibility, and high sensitivity with respective detection limits of 11.5 and 2.5 fM. Feasibility of the proposed approach was verified by application of the optimized procedure to four real water samples. Recoveries of 84.6-96.6% at a spiked level of 88.6 fM for PS nanoplastics and 76.5-96.6% at a spiked level of 50.4 fM for PMMA nanoplastics were obtained. Consequently, this work provides an efficient approach for nanoplastic analysis in environmental waters.


Subject(s)
Liquid-Liquid Extraction/methods , Nanoparticles/analysis , Polymethyl Methacrylate/analysis , Polystyrenes/analysis , Pyrolysis , Disaccharides , Glucuronates , Limit of Detection , Nanoparticles/chemistry , Octoxynol/chemistry , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Reproducibility of Results , Rivers/chemistry , Seawater/analysis , Surface-Active Agents/chemistry , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...