Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(2): 887-902, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38105768

ABSTRACT

Gram-negative sepsis has become a substantial and escalating global healthcare challenge due to the growing antibiotic resistance crisis and the sluggish development of new antibiotics. LL-37, a unique Cathelicidin species found in humans, exhibits a wide range of bioactive properties, including direct bactericidal effects, inflammation regulation, and LPS neutralization. KR-12, the smallest yet potent peptide fragment of LL-37, has been modified to create more effective antimicrobials. In this study, we designed two myristoylated derivatives of KR-12, referred to as Myr-KR-12N and Myr-KR-12C. These derivatives displayed remarkable ability to spontaneously assemble into nanoparticles when mixed with deionized water. Myristoylated KR-12 derivatives exhibited broad-spectrum and intensified bactericidal activity by disrupting bacterial cell membranes. In particular, Myr-KR-12N showed superior capability to rescue mice from lethal E. coli-induced sepsis in comparison with the conventional antibiotic meropenem. We also confirmed that the myristoylated KR-12 nanobiotic possesses significant LPS binding capacity and effectively reduces inflammation in vitro. In an in vivo context, Myr-KR-12N outperformed polymyxin B in rescuing mice from LPS-induced sepsis. Crucially, toxicological assessments revealed that neither Myr-KR-12N nor Myr-KR-12C nanobiotics induced meaningful hemolysis or caused damage to the liver and kidneys. Collectively, our study has yielded an innovative nanobiotic with dual capabilities of bactericidal action and LPS-neutralization, offering substantial promise for advancing the clinical translation of antimicrobial peptides and the development of novel antibiotics. This addresses the critical need for effective solutions to combat Gram-negative sepsis, a pressing global medical challenge.


Subject(s)
Escherichia coli Infections , Sepsis , Humans , Animals , Mice , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Lipopolysaccharides/chemistry , Escherichia coli/metabolism , Cathelicidins/chemistry , Cathelicidins/metabolism , Cathelicidins/pharmacology , Bacteria , Sepsis/drug therapy , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
2.
Exp Ther Med ; 20(6): 170, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33093907

ABSTRACT

The current study aimed to investigate whether sarpogrelate and rosuvastatin possess anti-arterial injury, and attempted to elucidate the mechanism of action underlying this activity. Sarpogrelate, a 5-hydroxytryptamine type 2A antagonist, is extensively used to prevent arterial thrombosis; however, its effects on atherosclerosis remain unknown. In the present study, sarpogrelate combined with rosuvastatin or rosuvastatin alone were administered to male ApoE-/- mice fed a high-fat diet (HFD) for 8 weeks. Metabolic parameters in the blood samples were analyzed using an automatic analyzer. Aortic tissues were stained with hematoxylin and eosin for morphological analysis. The expression levels of oxidized-low density lipoprotein (LDL) specific scavenging receptors, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 68 were detected via immunostaining. mRNA expression levels of interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α were determined via reverse transcription-quantitative PCR analysis, while protein expression levels of LOX-1 and phosphor(p)-ERK were determined via western blot analysis. The results demonstrated that sarpogrelate combined with rosuvastatin treatment significantly decreased total cholesterol and LDL cholesterol levels in the serum, and alleviated intimal hyperplasia and lipid deposition, accompanied by decreased inflammatory cell infiltration and lower expression levels of inflammatory cytokines, compared with rosuvastatin monotherapy or HFD treatment. Furthermore, sarpogrelate combined with rosuvastatin treatment significantly decreased the expression levels of LOX-1 and p-ERK. Taken together, these results suggest that the positive effects of sarpogrelate combined with rosuvastatin treatment on aortic injury may be associated with the regulation of the LOX-1/p-ERK signaling pathway. Sarpogrelate and rosuvastatin synergistically decreased aortic damage in ApoE-/- HFD mice, and thus provide a basis for the treatment of aortic injury caused by hyperlipidemia with sarpogrelate.

SELECTION OF CITATIONS
SEARCH DETAIL
...