Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 923: 171323, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438031

ABSTRACT

Particulate matter represents one of the most severe air pollutants globally. Organic aerosol (OA) comprises 30-70 % of submicron particle mass in urban areas. An effective way to mitigate OA particulate pollutants is to reduce the formation of secondary organic aerosol (SOA). Here, we studied the effect of titanium dioxide (TiO2) photocatalytic seeds on the formation and mitigation of SOA particles from α-pinene or toluene oxidation in chamber. For the first time, we discovered that under ultraviolet (UV) irradiation, the presence of TiO2 directly removed internally mixed α-pinene SOA mass by 53.7 % within 200 mins, and also directly removed SOA matter in an externally mixed state that is not in direct contact with TiO2 surface: the mass of externally mixed α-pinene SOA was reduced by 21.9 % within 81 mins, and the toluene SOA mass was reduced by 46.6 % in 145mins. In addition, the presence of TiO2 effectively inhibited the formation of SOA particles with a SOA mass yield of zero. This study brings up an innovative concept for air pollution control - the direct photocatalytic degradation of OA with aid of TiO2-based photocatalysts. Our novel findings will potentially bring practical applications in air pollution abatement and regional, even global aerosol-climate interactions.

2.
ACS Earth Space Chem ; 4(3): 391-402, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32328536

ABSTRACT

Organic aerosol (OA) constitutes a significant fraction of atmospheric fine particle mass. However, the precursors and chemical processes responsible for a majority of OA are rarely conclusively identified. We use online observations of hundreds of simultaneously measured molecular components obtained from 15 laboratory OA formation experiments with constraints on their effective saturation vapor concentrations to attribute the VOC precursors and subsequent chemical pathways giving rise to the vast majority of OA mass measured in two forested regions. We find that precursors and chemical pathways regulating OA composition and volatility are dynamic over hours to days, with their variations driven by coupled interactions between multiple oxidants. The extent of physical and photochemical aging, and its modulation by NOx, were key to a uniquely comprehensive combined composition-volatility description of OA. Our findings thus provide some of the most complete mechanistic-level guidance to the development of OA descriptions in air quality and Earth system models.

3.
Nat Commun ; 10(1): 4370, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554809

ABSTRACT

Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of -0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities < 0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m2. Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.

4.
Sci Total Environ ; 652: 1-18, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30347308

ABSTRACT

Industrial processes, coal combustion, biomass burning (BB), and vehicular transport are important sources of atmospheric fine particles (PM2.5) and contribute to ambient air concentrations of health-hazardous species, such as heavy metals, polycyclic aromatic hydrocarbons (PAH), and oxygenated-PAHs (OPAH). In China, emission controls have been implemented to improve air quality during large events, like the Youth Olympic Games (YOG) in August 2014 in Nanjing. In this work, six measurement campaigns between January 2014 and August 2015 were undertaken in Nanjing to determine the effects of emission controls and meteorological factors on PM2.5 concentration and composition. PAHs, OPAHs, hopanes, n­alkanes, heavy metals, and several other inorganic elements were measured. PM2.5 and potassium concentrations were the highest in May-June 2014 indicating the prevalence of BB plumes in Nanjing. Emission controls substantially reduced concentrations of PM2.5 (31%), total PAHs (59%), OPAHs (37%), and most heavy metals (44-89%) during the YOG compared to August 2015. In addition, regional atmospheric transport and meteorological parameters partly explained the observed differences between the campaigns. The most abundant PAHs and OPAHs were benzo[b,k]fluoranthenes, fluoranthene, pyrene, chrysene, 1,8­naphthalic anhydride, and 9,10­anthracenedione in all campaigns. Carbon preference index and the contribution of wax n­alkanes indicated mainly biogenic sources of n­alkanes in May-June 2014 and anthropogenic sources in the other campaigns. Hopane indexes pointed to vehicular transport as the major source of hopanes, but contribution of coal combustion was detected in winter 2015. The results provide evidence to the local government of the impacts of the air protection regulations. However, differences between individual components were observed, e.g., concentrations of potentially more harmful OPAHs decreased less than concentrations of PAHs. The results suggest that the proportions of hazardous components in the PM2.5 may also change considerably due to emission control measures.

5.
Sci Total Environ ; 639: 1290-1310, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29929296

ABSTRACT

Ambient inhalable particulate matter (PM) is a serious health concern worldwide, but especially so in China where high PM concentrations affect huge populations. Atmospheric processes and emission sources cause spatial and temporal variations in PM concentration and chemical composition, but their influence on the toxicological characteristics of PM are still inadequately understood. In this study, we report an extensive chemical and toxicological characterization of size-segregated urban air inhalable PM collected in August and October 2013 from Nanjing, and assess the effects of atmospheric processes and likely emission sources. A549 human alveolar epithelial cells were exposed to day- and nighttime PM samples (25, 75, 150, 200, 300 µg/ml) followed by analyses of cytotoxicity, genotoxicity, cell cycle, and inflammatory response. PM10-2.5 and PM0.2 caused the greatest toxicological responses for different endpoints, illustrating that particles with differing size and chemical composition activate distinct toxicological pathways in A549 cells. PM10-2.5 displayed the greatest oxidative stress and genotoxic responses; both were higher for the August samples compared with October. In contrast, PM0.2 and PM2.5-1.0 samples displayed high cytotoxicity and substantially disrupted cell cycle; August samples were more cytotoxic whereas October samples displayed higher cell cycle disruption. Several components associated with combustion, traffic, and industrial emissions displayed strong correlations with these toxicological responses. The lower responses for PM1.0-0.2 compared to PM0.2 and PM2.5-1.0 indicate diminished toxicological effects likely due to aerosol aging and lower proportion of fresh emission particles rich in highly reactive chemical components in the PM1.0-0.2 fraction. Different emission sources and atmospheric processes caused variations in the chemical composition and toxicological responses between PM fractions, sampling campaigns, and day and night. The results indicate different toxicological pathways for coarse-mode particles compared to the smaller particle fractions with typically higher content of combustion-derived components. The variable responses inside PM fractions demonstrate that differences in chemical composition influence the induced toxicological responses.

6.
Geophys Res Lett ; 44(5): 2562-2570, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28503004

ABSTRACT

Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α-pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.

7.
Environ Sci Technol ; 51(3): 1423-1432, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28009165

ABSTRACT

Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NOx), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NOx concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NOx conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NOx conditions) was 34.1%. The reduced SOA yield under high-NOx conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Monoterpenes/chemistry , Oxidation-Reduction , Vehicle Emissions
8.
Environ Sci Technol ; 47(6): 2645-53, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23419193

ABSTRACT

This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.


Subject(s)
Aerosols/chemistry , Atmosphere , Mass Spectrometry/methods , Acids/analysis , Nitrates/analysis , Particle Size , Sulfates/analysis
9.
J Environ Sci (China) ; 22(10): 1570-5, 2010.
Article in English | MEDLINE | ID: mdl-21235188

ABSTRACT

Smog chamber experiments were performed to investigate the composition of products formed from photooxidation of aromatic hydrocarbon ethylbenzene. Vacuum ultraviolet photoionization mass spectrometer and aerosol time-of-flight mass spectrometer were used to measure the products in the gas and particle phases in real-time. Experimental results demonstrated that ethylphenol, methylglyoxal, phenol, benzaldehyde, and 2-ethylfurane were the predominant photooxidation products in both the gas and particle phases. However, there were some differences between detected gas phase products and those of particle phase, for example, 2-ethylfurane, ethylglyoxylic acid, nitroethylbenzene, 3,4-dioxopentanal and ethyl-nitrophenol were only existing in the particle-phase. The possible reaction mechanisms leading to these products were also discussed and proposed.


Subject(s)
Benzene Derivatives/chemistry , Photochemistry , Molecular Structure , Oxidation-Reduction
10.
J Environ Sci (China) ; 21(4): 447-51, 2009.
Article in English | MEDLINE | ID: mdl-19634418

ABSTRACT

Secondary organic aerosol (SOA) formation from hydroxyl radical (OH*) initiated photooxidation of alpha-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for alpha-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light application time, the concentration, and the size of SOA particles were also increased. In addition, the factors influencing the formation of SOA were discussed. In addition, this article compared the effect of alpha-pinene with that of toluene, and discussed the contribution of alpha-pinene to SOA formation.


Subject(s)
Aerosols , Monoterpenes/chemistry , Photochemistry , Bicyclic Monoterpenes , Oxidation-Reduction , Particle Size
11.
J Environ Sci (China) ; 19(6): 704-8, 2007.
Article in English | MEDLINE | ID: mdl-17969643

ABSTRACT

Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride>sodium silicate and ammonium nitrate>ammonium sulfate.


Subject(s)
Ammonium Sulfate , Calcium Chloride , Nitrates , Silicates , Toluene/chemistry , Toluene/radiation effects , Aerosols , Air Pollutants/chemistry , Air Pollutants/radiation effects , Ammonium Sulfate/chemistry , Ammonium Sulfate/radiation effects , Calcium Chloride/chemistry , Calcium Chloride/radiation effects , Nitrates/chemistry , Nitrates/radiation effects , Nitric Oxide/chemistry , Nitric Oxide/radiation effects , Nitrites/chemistry , Nitrites/radiation effects , Oxidation-Reduction , Silicates/chemistry , Silicates/radiation effects , Ultraviolet Rays
12.
J Synchrotron Radiat ; 13(Pt 6): 415-20, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17057314

ABSTRACT

At the National Synchrotron Radiation Laboratory, The University of Science and Technology of China, an atomic and molecular physics beamline with an energy range of 7.5-124 eV has been constructed for studying the spectroscopy and dynamics of atoms, molecules and clusters. The undulator-based beamline, with a high-resolution spherical-grating monochromator (SGM), is connected to the atomic and molecular physics end-station. This end-station includes a main experimental chamber for photoionization studies and an additional multi-stage photoionization chamber for photoabsorption spectroscopy. A mid-photon flux of 5 x 10(12) photons s(-1) and a high resolving power is provided by this SGM beamline in the energy range 7.5-124 eV. The size of the synchrotron radiation beam spot at the sample is about 0.5 mm in the vertical direction and 1.0 mm in the horizontal direction. Some experimental results of photoionization efficiency spectroscopy and photoabsorption spectroscopy of atoms and molecules are also reported.


Subject(s)
Equipment Failure Analysis , Health Physics , Laboratories , Radiometry , Research/instrumentation , Synchrotrons/instrumentation , China , Equipment Design , Radiation Dosage
13.
J Environ Sci (China) ; 18(5): 903-9, 2006.
Article in English | MEDLINE | ID: mdl-17278745

ABSTRACT

Photooxidation reaction of toluene in smog chamber systems was initiated by the UV radiation of toluene/CH3ONO/NOx mixtures. The products of the photooxidation reaction of toluene and its subsequent reactions were analyzed directly utilizing Fourier transform infrared spectrometer (FTIR). Detailed assignments to FTIR spectrum of gas-phase products were given. The information of some important functional groups in the products, such as, carbonyl groups (C-O), hydroxyl groups ( -OH), carboxylic acid (-COOH), C-C bonding, N-O bonding and C-H bonding (C-H), was got from this analysis. These results were compared to those analyzed by aerosol time of flight mass spectrometer (ATOFMS). It was found that there are some differences between FTIR analysis of gas-phase products and that of particle-phase, for example, the products with carbonyl groups, which were connected to unsaturated chemical bonds, was relatively higher in the gas phase, while ketones, aldehydes, carboxylic acid and organonitrates were the dominant functional groups in the aerosol-phase reaction products. The possible reaction pathways of some important products in the gas phase were also discussed.


Subject(s)
Toluene/chemistry , Oxidation-Reduction , Photochemistry , Spectroscopy, Fourier Transform Infrared
14.
J Environ Sci (China) ; 17(6): 912-6, 2005.
Article in English | MEDLINE | ID: mdl-16465876

ABSTRACT

In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH*) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH3 ONO, however, it would be decreased as soon as the concentration of CH3 ONO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30.1 ppm was also found to have little effect on the formation of secondary organic aerosol.


Subject(s)
Air Pollutants , Photochemistry , Toluene/chemistry , Aerosols/chemistry , Oxidation-Reduction , Particle Size , Time Factors
15.
J Phys Chem B ; 108(20): 6311-4, 2004 May 20.
Article in English | MEDLINE | ID: mdl-18950116

ABSTRACT

A coating process was applied to prepare nickel-silica composite hollow nanospheres (650 nm) with controllable shell thickness. The nanospheres were characterized through X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy. This material with large BET surface area (288 m2/g) exhibits good catalytic activity and high selectivity in acetone hydrogenation reaction, showing the potential application as a catalyst in industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...