Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 515(4): 651-657, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31178138

ABSTRACT

Cerebral ischemia is a leading cause of death and long-term disability in the world. Tripartite motif-47 (Trim47), a member of the TRIM family proteins, has been reported to be involved in apoptosis and inflammation in various types of diseases. Nevertheless, the underlying molecular mechanism of Trim47 in cerebral ischemia/reperfusion (I/R) injury remains unclear. This study aimed to explore the role of Trim47 in cerebral I/R injury and the potential underlying mechanisms. The results indicated that Trim47 expression was markedly induced in rats after stroke onset. By the use of genetic approaches, we indicated that Trim47 knockdown significantly reduced the infarct size, mitigated the neurological deficits scores and decreased brain water contents in rats with cerebral I/R injury induced by middle cerebral artery occlusion (MCAO). In addition, Trim47 knockdown-alleviated cerebral I/R was correlated with the suppression of apoptosis through inhibiting Caspase-3 cleavage. Furthermore, reducing Trim47 apparently decreased the release of pro-inflammatory factors, including interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), in brain samples of MCAO rats, which was partly by the blockage of nuclear factor-kappa B (NF-κB) signaling. However, Trim47 over-expression markedly accelerated cerebral ischemia injury through promoting apoptosis and inflammation. The suppressive effects of Trim47 knockdown on cerebral I/R were verified in human neuron-like cells stimulated by oxygen and glucose deprivation (OGD). Thus, this study demonstrated a new mechanism for the effect of Trim47 on cerebral I/R injury, and targeting Trim47 might provide feasible therapies for stroke treatment.


Subject(s)
Apoptosis , Brain Ischemia/pathology , Carrier Proteins/metabolism , Inflammation/metabolism , Reperfusion Injury/pathology , Stroke/pathology , Tripartite Motif Proteins/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Caspase 3/metabolism , Cell Line, Tumor , Humans , Infarction, Middle Cerebral Artery , Interleukin-6/metabolism , Male , Rats , Rats, Sprague-Dawley , Signal Transduction , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...