Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 204: 107208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729587

ABSTRACT

Cancer cell line is commonly used for discovery and development of anti-cancer drugs. It is generally considered that drug response remains constant for a certain cell line due to the identity of genetics thus protein patterns. Here, we demonstrated that cancer cells continued dividing even after reaching confluence, in that the proteomics was changed continuously and dramatically with strong relevance to cell division, cell adhesion and cell metabolism, indicating time-dependent intrinsically reprogramming of cells during expansion. Of note, the inhibition effect of most anti-cancer drugs was strikingly attenuated in culture cells along with cell expansion, with the strongest change at the third day when cells were still expanding. Profiling of an FDA-approved drug library revealed that attenuation of response with cell expansion is common for most drugs, an exception was TAK165 that was a selective inhibitor of mitochondrial respiratory chain complex I. Finally, we screened a panel of natural products and identified four pentacyclic triterpenes as selective inhibitors of cancer cells under prolonged growth. Taken together, our findings underscore that caution should be taken in evaluation of anti-cancer drugs using culture cells, and provide agents selectively targeting overgrowth cancer cells.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Proteomics , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Time Factors , Biological Products/pharmacology , Pentacyclic Triterpenes/pharmacology
2.
J Zhejiang Univ Sci B ; 25(1): 51-64, 2024 Jan 15.
Article in English, Chinese | MEDLINE | ID: mdl-38163666

ABSTRACT

Pancreatic cancer is among the most malignant cancers, and thus early intervention is the key to better survival outcomes. However, no methods have been derived that can reliably identify early precursors of development into malignancy. Therefore, it is urgent to discover early molecular changes during pancreatic tumorigenesis. As aberrant glycosylation is closely associated with cancer progression, numerous efforts have been made to mine glycosylation changes as biomarkers for diagnosis; however, detailed glycoproteomic information, especially site-specific N-glycosylation changes in pancreatic cancer with and without drug treatment, needs to be further explored. Herein, we used comprehensive solid-phase chemoenzymatic glycoproteomics to analyze glycans, glycosites, and intact glycopeptides in pancreatic cancer cells and patient sera. The profiling of N-glycans in cancer cells revealed an increase in the secreted glycoproteins from the primary tumor of MIA PaCa-2 cells, whereas human sera, which contain many secreted glycoproteins, had significant changes of glycans at their specific glycosites. These results indicated the potential role for tumor-specific glycosylation as disease biomarkers. We also found that AMG-510, a small molecule inhibitor against Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C mutation, profoundly reduced the glycosylation level in MIA PaCa-2 cells, suggesting that KRAS plays a role in the cellular glycosylation process, and thus glycosylation inhibition contributes to the anti-tumor effect of AMG-510.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Glycosylation , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Glycoproteins , Mass Spectrometry , Biomarkers/metabolism , Polysaccharides
3.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177672

ABSTRACT

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Subject(s)
Intercellular Signaling Peptides and Proteins , Thymocytes , Mice , Animals , Mice, Knockout , Thymocytes/metabolism , Receptors, Antigen, T-Cell , Signal Transduction
4.
Rapid Commun Mass Spectrom ; 38(1): e9673, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38073198

ABSTRACT

RATIONALE: Thermal proteome profiling (TPP) has been widely used for the identification of drug targets for several years, and TMTpro-16plex has recently been evaluated for TPP of vehicle- and drug-treated samples in a single labeling process to reduce missing values and save instrument time. A novel isobaric labeling reagent, IBT-16plex, was developed with slightly better performance in protein identification and quantification than the commercially available TMTpro-16plex. METHODS: In this study, we applied the newly developed IBT-16plex for target identification of methotrexate and panobinostat using TPP. RESULTS: The known targets of these two drugs were successfully identified with elevated melting temperatures, and some known off-targets and potential new off-targets were also identified. CONCLUSIONS: IBT-16plex can be a cost-effective replacement for TMTpro-16plex for TPP applications.


Subject(s)
Proteome , Proteomics , Proteome/metabolism , Panobinostat
5.
J Med Chem ; 66(17): 11855-11868, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37669317

ABSTRACT

Despite the essential roles of Frizzled receptors (FZDs) in mediating Wnt signaling in embryonic development and tissue homeostasis, ligands targeting FZDs are rare. A few antibodies and peptide modulators have been developed that mainly bind to the family-conserved extracellular cysteine-rich domain of FZDs, while the canonical binding sites in the transmembrane domain (TMD) are far from sufficiently addressed. Based on the recent structures of FZDs, we explored small-molecule ligand discovery by targeting TMD. From the ChemDiv library with ∼1.6 million compounds, we identified compound F7H as an antagonist of FZD7 with an IC50 at 1.25 ± 0.38 µM. Focusing on this hit, the structural dissection study, together with computing studies such as molecular docking, molecular dynamics simulation, and free energy perturbation calculations, defined the binding pocket with key residue recognition. Our results revealed the structural basis of ligand recognition and demonstrated the feasibility of structure-guided ligand discovery for FZD7-TMD.


Subject(s)
Antibodies , Frizzled Receptors , Female , Pregnancy , Humans , Ligands , Molecular Docking Simulation , Binding Sites
6.
Cancer Res Commun ; 3(2): 202-214, 2023 02.
Article in English | MEDLINE | ID: mdl-36968139

ABSTRACT

Xenografts are essential models for studying cancer biology and developing oncology drugs, and are more informative with omics data. Most reported xenograft proteomics projects directly profiled tumors comprising human cancer cells and mouse stromal cells, followed by computational algorithms for assigning peptides to human and mouse proteins. We evaluated the performance of three main algorithms by carrying out benchmark studies on a series of human and mouse cell line mixtures and a set of liver patient-derived xenograft (PDX) models. Our study showed that approximately half of the characterized peptides are common between human and mouse proteins, and their allocations to human or mouse proteins cannot be satisfactorily achieved by any algorithm. As a result, many human proteins are erroneously labeled as differentially expressed proteins (DEP) between samples from the same human cell line mixed with different percentages of mouse cells, and the number of such false DEPs increases superquadratically with the mouse cell percentage. When mouse stromal cells are not removed from PDX tumors, about 30%-40% of DEPs from pairwise comparisons of PDX models are false positives, and about 20% of real DEPs cannot be identified irrespective of the threshold for calling differential expression. In conclusion, our study demonstrated that it is advisable to separate human and mouse cells in xenograft tumors before proteomic profiling to obtain more accurate measurement of species-specific protein expression. Significance: This study advocates the separate-then-run over the run-then-separate approach as a better strategy for more reliable proteomic profiling of xenografts.


Subject(s)
Neoplasms , Proteomics , Humans , Mice , Animals , Heterografts , Neoplasms/metabolism , Stromal Cells/metabolism
7.
Bioorg Chem ; 133: 106435, 2023 04.
Article in English | MEDLINE | ID: mdl-36841049

ABSTRACT

Herein, we synthesized an affinity-based probe of myricanol (pMY) with a photo-affinity cross-linker to initiate a bioconjugation reaction, which was applied for target identification in live C2C12 myotubes. Pull-down of biotinylated pMY coupled with mass spectroscopy and Western blotting revealed that pMY can bind with nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Cellular thermal shift assay, drug affinity responsive target stability assay and recombinant protein labeling further validated the direct interaction between myricanol and Nampt. Myricanol did not affect the protein expression of Nampt, but enhanced its activity. Knock-down of Nampt totally abolished the promoting effect of myricanol on insulin-stimulated glucose uptake in C2C12 myotubes. Taken together, myricanol sensitizes insulin action in myotubes through binding with and activating Nampt.


Subject(s)
Insulins , Nicotinamide Phosphoribosyltransferase , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/pharmacology , Muscle Fibers, Skeletal , Diarylheptanoids/pharmacology , Cytokines/metabolism , Insulins/metabolism , Insulins/pharmacology , NAD/metabolism
9.
Front Microbiol ; 13: 944361, 2022.
Article in English | MEDLINE | ID: mdl-36060780

ABSTRACT

Extracellular vesicle-mediated transfer of microRNAs is a novel mode of cell-to-cell genetic transmission. Extracellular vesicles produced by microbes have been shown to contain significant quantities of physiologically active molecules such as proteins, lipids, and RNA, which could be transported to host cells and play a key role in both inter-kingdom signaling and physiological responses. In this study, we identified sRNAs by sequencing small RNAs (sRNAs) from Lactobacillus plantarum-derived extracellular vesicles (LDEVs) and detected the expression levels of vesicular sRNAs using quantitative reverse transcription-polymerase chain reaction (RT-PCR), which demonstrated the presence of microRNA-sized RNAs (msRNAs) within these vesicles. We chose sRNA71, a highly expressed msRNA, for further investigation, predicted its potential target genes for the human genome, and indicated that it could be translocated into mammalian cells. The biological functions of this sRNA71 were subsequently explored through cellular proteomics, western blot, and luciferase reporter assay. According to the findings, transfection with synthetic sRNA71 mimics substantially reduced Tp53 expression in HEK293T cells and suppressed the gene expression through binding to the 3' UTR of Tp53 mRNA. In conclusion, it is hypothesized that microbial-derived extracellular vesicles serve as carriers of functional molecules such as sRNAs, which play an essential role in regulating microbial-host communication.

10.
Am J Cancer Res ; 12(6): 2697-2710, 2022.
Article in English | MEDLINE | ID: mdl-35812066

ABSTRACT

Syndecan-4 (SDC4) is a single-pass transmembrane glycoprotein implicated in a variety of oncogenic signaling pathways. It is also an intrinsically disordered protein and considered "undruggable". In the present study, we confirmed that knocking out SDC4 in pancreatic cancer cells markedly impaired macropinocytosis, colony formation, as well as xenograft tumor initiation and growth. Quantitative proteomic profiling of Sdc4 knockout (KO) cells revealed significant changes in cell metabolic pathways. In a cellular protein-based ligand interaction screening, we identified that Eltrombopag (ETBP), an FDA-approved agonist of the thrombopoietin receptor (TPOR) for immune thrombocytopenia, could directly bind to SDC4 with a Kd value of ~2 µM. We showed that the transmembrane motif was essential for SDC4 binding to ETBP. Unexpectedly, ETBP not only increased SDC4 abundance, but also enhanced SDC4-associated MAPK signaling pathway and macropinocytosis in cancer cells. Our results indicate that ETBP is a potential agonist of SDC4 in a fashion similar to its original target TPOR, and that caution should be taken when using ETBP for chemotherapy-induced thrombocytopenia in cancer patients.

11.
ACS Omega ; 7(21): 17894-17906, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664632

ABSTRACT

Aberrant glycosylation is a hallmark of cancer found during tumorigenesis and tumor progression. Lung cancer (LC) induced by oncogene mutations has been detected in the patient's saliva, and saliva glycosylation has been altered. Saliva contains highly glycosylated glycoproteins, the characteristics of which may be related to various diseases. Therefore, elucidating cancer-specific glycosylation in the saliva of healthy, non-cancer, and cancer patients can reveal whether tumor glycosylation has unique characteristics for early diagnosis. In this work, we used a solid-phase chemoenzymatic method to study the glycosylation of saliva glycoproteins in clinical specimens. The results showed that the α1,6-core fucosylation of glycoproteins was increased in cancer patients, whereas α1,2 or α1,3 fucosylation was significantly increased. We further analyzed the expression of fucosyltransferases responsible for α1,2, α1,3, and α1,6 fucosylation. The fucosylation of the saliva of cancer patients is drastically different from that of non-cancer or health controls. These results indicate that the glycoform of saliva fucosylation distinguishes LC from other diseases, and this feature has the potential to diagnose lung adenocarcinoma.

12.
Cell Chem Biol ; 29(8): 1260-1272.e8, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35732177

ABSTRACT

Programmed cell death protein 1 (PD-1) checkpoint blockade therapy requires the CD28 co-stimulatory receptor for CD8+ T cell expansion and cytotoxicity. However, CD28 expression is frequently lost in exhausted T cells and during immune senescence, limiting the clinical benefits of PD-1 immunotherapy in individuals with cancer. Here, using a cereblon knockin mouse model that regains in vivo T cell response to lenalidomide, an immunomodulatory imide drug, we show that lenalidomide reinstates the anti-tumor activity of CD28-deficient CD8+ T cells after PD-1 blockade. Lenalidomide redirects the CRL4Crbn ubiquitin ligase to degrade Ikzf1 and Ikzf3 in T cells and unleashes paracrine interleukin-2 (IL-2) and intracellular Notch signaling, which collectively bypass the CD28 requirement for activation of intratumoral CD8+ T cells and inhibition of tumor growth by PD-1 blockade. Our results suggest that PD-1 immunotherapy can benefit from a lenalidomide combination when treating solid tumors infiltrated with abundant CD28- T cells.


Subject(s)
CD28 Antigens , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes , Immunologic Factors , Immunotherapy/methods , Lenalidomide/pharmacology , Mice
13.
Elife ; 112022 05 12.
Article in English | MEDLINE | ID: mdl-35550247

ABSTRACT

Tyrosine phosphorylation, orchestrated by tyrosine kinases and phosphatases, modulates a multi-layered signaling network in a time- and space-dependent manner. Dysregulation of this post-translational modification is inevitably associated with pathological diseases. Our previous work has demonstrated that non-receptor tyrosine kinase FER is upregulated in ovarian cancer, knocking down which attenuates metastatic phenotypes. However, due to the limited number of known substrates in the ovarian cancer context, the molecular basis for its pro-proliferation activity remains enigmatic. Here, we employed mass spectrometry and biochemical approaches to identify insulin receptor substrate 4 (IRS4) as a novel substrate of FER. FER engaged its kinase domain to associate with the PH and PTB domains of IRS4. Using a proximity-based tagging system in ovarian carcinoma-derived OVCAR-5 cells, we determined that FER-mediated phosphorylation of Tyr779 enables IRS4 to recruit PIK3R2/p85ß, the regulatory subunit of PI3K, and activate the PI3K-AKT pathway. Rescuing IRS4-null ovarian tumor cells with phosphorylation-defective mutant, but not WT IRS4 delayed ovarian tumor cell proliferation both in vitro and in vivo. Overall, we revealed a kinase-substrate mode between FER and IRS4, and the pharmacological inhibition of FER kinase may be beneficial for ovarian cancer patients with PI3K-AKT hyperactivation.


Subject(s)
Insulin Receptor Substrate Proteins , Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-akt , Carcinogenesis , Carcinoma, Ovarian Epithelial/metabolism , Cell Transformation, Neoplastic , Enzyme Activation , Female , Humans , Insulin Receptor Substrate Proteins/metabolism , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tyrosine/metabolism
14.
ACS Chem Neurosci ; 13(12): 1719-1726, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35640092

ABSTRACT

It is urgently needed to find reliable biofluid biomarkers for early diagnosis of Parkinson's disease in order to achieve better treatment. Promising biomarkers can be found in Parkinson's disease-related glycoproteins as aberrant protein glycosylation plays an important role in disease progression. However, current information on serum N-glycoproteomic changes in Parkinson's disease is still limited. Here, we used glycoproteomics methods, which combine the solid-phase chemoenzymatic method, lectin affinity chromatography, and hydrophilic interaction chromatography with high-resolution mass spectrometry, to analyze the glycans, glycosites, and intact glycopeptides of serum. Increased abundance of glycans containing core fucose, sialic acid, and bisecting N-acetyl glucosamine was detected at the overall glycan level and also at specific glycosites of glycopeptides. Five Parkinson's disease-associated proteins with this type of N-glycosylation changes were also identified. We propose that the revealed site-specific N-glycosylation changes in serum can be potential biomarkers for Parkinson's disease.


Subject(s)
Parkinson Disease , Tandem Mass Spectrometry , Glycopeptides/chemistry , Glycosylation , Humans , Parkinson Disease/diagnosis , Polysaccharides/chemistry , Tandem Mass Spectrometry/methods
15.
Cell Rep ; 38(12): 110538, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35320710

ABSTRACT

ß-Catenin is a central component in the Wnt signaling pathway; its degradation has been tightly connected to ubiquitylation, but it is rarely examined by loss-of-function assays. Here we observe that endogenous ß-catenin is not stabilized upon ubiquitylation depletion by a ubiquitylation inhibitor, TAK-243. We demonstrate that N-terminal phosphorylated ß-catenin is quickly and strongly stabilized by a specific neddylation inhibitor, MLN4924, in all examined cell types, and that ß-catenin and TCF4 interaction is strongly enhanced by inhibition of neddylation but not ubiquitylation. We also confirm that the E3 ligase ß-TrCP2, but not ß-TrCP1, is associated with neddylation and destruction of ß-catenin. GSK3ß and adenomatous polyposis coli (APC) are not required for ß-catenin neddylation but essential for its subsequent degradation. Our findings not only clarify the process of ß-catenin modification and degradation in the Wnt signaling pathway but also highlight the importance of reassessing previously identified ubiquitylation substrates.


Subject(s)
Adenomatous Polyposis Coli , beta Catenin , Adenomatous Polyposis Coli/metabolism , Adenomatous Polyposis Coli Protein/genetics , Humans , Ubiquitination , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
16.
Cell Rep ; 38(5): 110319, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108540

ABSTRACT

Wnt/ß-catenin signaling is a well-established driver of colon cancer; however, a targeted therapeutic agent has not reached clinics yet. In the present study, we report that the natural compound liquidambaric acid (LDA) inhibits oncogenic Wnt/ß-catenin signaling in vitro and in vivo through its direct target tumor necrosis factor receptor-associated factor 2 (TRAF2). Mechanistically, TRAF2 positively regulates Wnt signaling by interacting with the N-terminal of ß-catenin via its TRAF-C domain; this interaction is disrupted in presence of LDA. Particularly, a TRAF2/ß-catenin/TCF4/TNIK complex is present in colon cancer cells, where TRAF2 is indispensable for the complex formation, and TRAF2/ß-catenin and ß-catenin/TCF4 interactions are disrupted upon LDA treatment. Our findings not only highlight that TRAF2 is an oncogenic regulator of Wnt/ß-catenin signaling and colon cancer but also provide a lead compound targeting TRAF2 for cancer therapy.


Subject(s)
Carcinogenesis/drug effects , Colonic Neoplasms/metabolism , Colorectal Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/antagonists & inhibitors , Animals , Carcinogenesis/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Factor 2/drug effects , TNF Receptor-Associated Factor 2/metabolism , Wnt Proteins/drug effects , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , Zebrafish
17.
ACS Med Chem Lett ; 13(2): 292-297, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35178185

ABSTRACT

Target identification is an essential step in drug discovery. It facilitates an understanding of drug action and potential toxicities and offers opportunities to repurpose drug candidates. HP-1, a potent EGFRL858R/T790M (epidermal growth factor receptor) mutant inhibitor, was developed by the group in an effort to treat acquired resistance in nonsmall cell lung cancer (NSCLC), but its cellular off-targets were not identified. An activity-based probe, HJ-1, was created followed by chemical proteomics and bioimaging studies. A total of 13 protein hits, including EGFR and NT5DC1, were identified by pull-down/LC-MS. Subsequent validation experiments indicated the involvement of a major off-target, NT5DC1, in the biological function of HP-1.

18.
BMC Biol ; 19(1): 194, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493279

ABSTRACT

BACKGROUND: KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. RESULTS: We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re-localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi. CONCLUSIONS: These results suggest that ACBD3 may function as a negative regulator of PKA activity on KDEL receptor, thereby restricting its retrograde trafficking in the absence of KDEL ligand binding. Since ACBD3 was originally identified as PAP7, a PBR/PKA-interacting protein at the Golgi/mitochondria, we propose that Golgi-localization of KDEL receptor is likely to be controlled by its interaction with ACBD3/PKA complex at steady state, providing a novel insight for establishment of cellular homeostasis in the early secretory pathway.


Subject(s)
Adaptor Proteins, Signal Transducing , Golgi Apparatus , Receptors, Peptide , Cell Membrane , Cyclic AMP-Dependent Protein Kinases
19.
Br J Haematol ; 195(2): 267-275, 2021 10.
Article in English | MEDLINE | ID: mdl-34409610

ABSTRACT

The expression of GGCT (γ-glutamyl cyclotransferase) is upregulated in various human cancers. γ-glutamyl cyclotransferase enzyme activity was originally purified from human red blood cells (RBCs), but the physiological function of GGCT in RBCs is still not clear. Here we reported that Ggct deletion in mice leads to splenomegaly and progressive anaemia phenotypes, due to elevated oxidative damage and the shortened life span of Ggct-/- RBCs. Ggct-/- RBCs have increased reactive oxygen species (ROS), and are more sensitive to H2 O2 -induced damage compared to control RBCs. Glutathione (GSH) and GSH synthesis precursor l-cysteine are decreased in Ggct-/- RBCs. Our study suggests a critical function of Ggct in RBC redox balance and life span maintenance through regulating GSH metabolism.


Subject(s)
Erythrocytes/metabolism , Reactive Oxygen Species/metabolism , gamma-Glutamylcyclotransferase/metabolism , Anemia/genetics , Animals , Antioxidants/metabolism , Cysteine/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Erythropoietin/metabolism , Female , Gene Deletion , Glutathione/metabolism , Male , Metabolomics/methods , Mice , Models, Animal , Phenotype , Splenomegaly/genetics , Up-Regulation/genetics
20.
ACS Omega ; 6(24): 15988-15999, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179644

ABSTRACT

The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the first point of contact for the virus to recognize and bind to host receptors, is the focus of biomedical research seeking to effectively prevent and treat coronavirus disease (COVID-19). The mass production of spike glycoproteins is usually carried out in different cell systems. Studies have been shown that different expression cell systems alter protein glycosylation of hemagglutinin and neuraminidase in the influenza virus. However, it is not clear whether the cellular system affects the spike protein glycosylation. In this work, we investigated the effect of an expression system on the glycosylation of the spike glycoprotein and its receptor-binding domain. We found that there are significant differences in the glycosylation and glycans attached at each glycosite of the spike glycoprotein obtained from different expression cells. Since glycosylation at the binding site and adjacent amino acids affects the interaction between the spike glycoprotein and the host cell receptor, we recognize that caution should be taken when selecting an expression system to develop inhibitors, antibodies, and vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL
...